Biologia Plantarum

, Volume 57, Issue 1, pp 179–183 | Cite as

Ectopic expression of the Osmyb4 rice gene enhances synthesis of hydroxycinnamic acid derivatives in tobacco and clary sage

  • T. Docimo
  • M. Mattana
  • R. Fasano
  • R. Consonni
  • N. de Tommasi
  • I. Coraggio
  • A. Leone
Brief Communication


In this work, we report the ectopic expression of the Osmyb4 rice gene, encoding the Myb4 transcription factor, in Nicotiana tabacum and Salvia sclarea. Transcriptional analysis of T2 homozygous tobacco plants overexpressing Osmyb4 revealed that Myb4 activated the transcription of several genes of the phenylpropanoid pathway such as PAL, C4H, 4CL1, 4CL2 (encoding phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, 4-coumarate: Co A ligase1, 4-coumarate: Co A ligase2). Moreover, the Myb4 increased expression of HQT encoding hydroxycinnamoyl-CoA: quinate transferase, which specifically triggers the accumulation of chlorogenic acid (CGA). In addition, increased acccumulation of rosmarinic acid (RA) was found in transgenic plants of both species. These results open the possibility of using the Osmyb4 gene to increase the production of specific bioactive hydroxycinnamates.

Additional key words

chlorogenic acid Myb transcription factor Nicotiana tabacum phenylpropanoid pathway rosmarinic acid Salvia sclarea 



4-coumarate:CoA ligase


chlorogenic acid


cinnamic acid 4-hydroxylase


5-enolpyruvylshikimate 3-phosphate synthase


empty vector


high performance liquid chromatography — with diode array detection


hydroxycinnamoyl CoA quinate transferase


phenylalanine ammonia lyase


rosmarinic acid


RA synthase


reverse transcription — polymerase chain reaction


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chang, J.L., Luo, J., He, G.Y.: Regulation of polyphenols accumulation by combined overexpression/silencing key enzymes of phyenylpropanoid pathway. — Acta biochim. biophys. sin. 41: 123–130, 2009.PubMedCrossRefGoogle Scholar
  2. Chen, H., Chen F.: Effect of yeast elicitor on the secondary metabolism of Ti-transformed Salvia miltiorrhiza cell suspension cultures. — Plant Cell Rep. 19: 710–717, 2000.CrossRefGoogle Scholar
  3. Choi, H.K., Choi, Y.H., Verberne, M., Lefeber, A.W., Erkelens, C., Verpoorte R.: Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H NMR and multivariate analysis technique. — Phytochemistry 65: 857–864, 2004.PubMedCrossRefGoogle Scholar
  4. Docimo, T., Coraggio, I., De Tommasi, N., Leone, A.: Enhancing phenylpropanoid secondary metabolites in Nicotiana tabacum and Salvia sclarea by overexpression of a rice Myb4 transcription factor. — Planta med. 74: 87, 2008.CrossRefGoogle Scholar
  5. Farah, A., Monteiro, M., Donangelo, C.M., Lafay S.: Chlorogenic Acids from green coffee extract are highly bioavailable in humans. — J. Nutr. 138: 2309–2315, 2008.PubMedCrossRefGoogle Scholar
  6. Gangopadhyay, M., Sircar, D., Mitra, A., Bhattacharya, S.: Hairy root culture of Plumbago indica as potential source for plumbagin. — Biol. Plant. 52: 533–537, 2008.CrossRefGoogle Scholar
  7. Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R., Weisshaar, B.: Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. — Plant mol. Biol. 57: 155–171, 2005.PubMedCrossRefGoogle Scholar
  8. Howles, P.A., Sewalt, V.J.H., Paiva, N.L., Elkind, Y., Bate, N.J., Lamb, C., Dixon, R.A.: Overexpression of Lphenylalanine ammonia-lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. — Plant Physiol. 112: 1617–1624, 1996.PubMedGoogle Scholar
  9. Knobloch, K.H., Hahlbrock, K.: 4-coumarate - CoA ligase from cell-suspension cultures of Petroselinum hortense Hoffm. — partial-purification, substrate-specificity, and further properties. — Arch. Biochem. Biophys. 184: 237–248, 1977.PubMedCrossRefGoogle Scholar
  10. Korkina L.G.: Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. — Cell. mol. Biol. 53: 15–25, 2007.PubMedGoogle Scholar
  11. Laura, M., Consonni, R., Locatelli, F., Fumagalli, E., Allavena, A., Coraggio, I., Mattana, M.: Metabolic response to cold and freezing of Osteospermum ecklonis overexpressing Osmyb4. — Plant Physiol. Biochem. 48: 764–771, 2010.PubMedCrossRefGoogle Scholar
  12. Leone A., Grillo S., Monti L., Cardi T.: Molecular tailoring and boosting of bioactive secondary metabolites in medicinal plants. — In: Ranalli, P. (ed.): Improvement of Crop Plants for Industrial Uses. Pp. 471–507. Springer, Heidelberg 2007.CrossRefGoogle Scholar
  13. Mattana, M., Biazzi, E., Consonni, R., Locatelli, F., Vannini, C., Provera, S., Coraggio I.: Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana. — Physiol. Plant. 125: 212–223, 2005.CrossRefGoogle Scholar
  14. Milkowski, C., Strack, D.: Sinapate esters in brassicaceous plants: biochemistry, molecular biology, evolution and metabolic engineering. — Planta 232: 19–35, 2010.PubMedCrossRefGoogle Scholar
  15. Murashige, T., Skoog, F.: A revised medium for rapid growth and bio assays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  16. Naoumkina, M.A., Zhao, Q.A., Gallego-Giraldo, L., Dai, X.B., Zhao, P.X., Dixon, R.A.: Genome-wide analysis of phenylpropanoid defence pathways. — Mol. Plant Pathol. 11: 829–846, 2010.PubMedGoogle Scholar
  17. Niggeweg, R., Michael, A.J., Martin, C.: Engineering plants with increased levels of the antioxidant chlorogenic acid. — Nat. Biotechnol. 22: 746–754, 2004.PubMedCrossRefGoogle Scholar
  18. Park, M.R., Yun, K.Y., Mohanty, B., Herath, V., Xu, F., Wijaya, E., Bajic, V.B., Yun, S.J., De Los Reyes, B.G.: Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development. — Plant Cell Environ. 12: 2209–2230, 2010.CrossRefGoogle Scholar
  19. Pasquali, G., Biricolti, S., Locatelli, F., Baldoni, E., Mattana, M.: Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples. — Plant Cell Rep. 27: 1677–1686, 2008.PubMedCrossRefGoogle Scholar
  20. Pattanaik, S., Kong, Q., Zaitlin D., Werkman, J.R., Xie, C.H., Patra, B., Yuan, L.: Isolation and functional characterization of a floral tissue-specific R2R3 MYB regulator from tobacco. — Planta 231: 1061–1076, 2010.PubMedCrossRefGoogle Scholar
  21. Petersen, M., Abdullah, Y., Benner, J., Eberle, D., Gehlen, K., Hucherig, S., Janiak, V., Kim, K.H., Sander, M., Weitzel, C., Wolters, S.: Evolution of rosmarinic acid biosynthesis. — Phytochemistry 70: 1663–1679, 2009.PubMedCrossRefGoogle Scholar
  22. Pfaffl, M.W.: A new mathematical model for relative quantification in real-time PCR. — Nucl. Acids Res. 29: 2002–2007, 2001.CrossRefGoogle Scholar
  23. Saunders, J.A., McClure, J.W.: Suitability of a quantitative spectrophotometric assay for phenylalanine ammonia-lyase activity in barley, buckwheat, and pea seedlings. — Plant Physiol. 54: 412–413, 1974.PubMedCrossRefGoogle Scholar
  24. Sun, S.B., Song, J.P., Yang, J.: Overexpressing Arabidopsis KNAT1 gene in Celosia plumosus L. causes modification of plant morphology. — Acta Physiol. Plant. 33: 1597–1602, 2011.CrossRefGoogle Scholar
  25. Treutter, D.: Managing phenol contents in crop plants by phytochemical farming and breeding — visions and constraints. — Int. J. mol. Sci. 11: 807–857, 2010.PubMedCrossRefGoogle Scholar
  26. Vannini, C., Iriti, M., Bracale, M., Locatelli, F., Faoro, F., Croce, P., Pirona, R., Di Maro A., Coraggio I., Genga A.: The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. — Physiol. mol. Plant Pathpl. 69: 26–42, 2006.CrossRefGoogle Scholar
  27. Vannini, C., Locatelli, F., Bracale M., Magnani, E., Marsoni, M., Osnato, M., Mattana, M., Baldoni, E., Coraggio, I.: Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. — Plant J. 37: 115–127, 2004.PubMedCrossRefGoogle Scholar
  28. Vogt T.: Phenylpropanoid biosynthesis. — Mol. Plant 3: 2–20, 2010.PubMedCrossRefGoogle Scholar
  29. Yan, Q., Shi, M., Ng, J., Wu, J.Y.: Elicitor-induced rosmarinic acid accumulation and secondary metabolism enzyme activities in Salvia miltiorrhiza hairy roots. — Plant Sci. 170: 853–858, 2006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • T. Docimo
    • 1
  • M. Mattana
    • 1
  • R. Fasano
    • 2
  • R. Consonni
    • 3
  • N. de Tommasi
    • 2
  • I. Coraggio
  • A. Leone
    • 2
  1. 1.Istituto di Biologia e Biotecnologie AgrarieConsiglio Nazionale delle RicercheMilanoItalia
  2. 2.Facoltà di FarmaciaUniversità di SalernoFiscianoItalia
  3. 3.Istituto per lo Studio delle MacromolecoleConsiglio Nazionale delle RicercheMilanoItalia

Personalised recommendations