Skip to main content
Log in

Ascorbate deficient semi-dwarf asfL1 mutant of Lathyrus sativus exhibits alterations in antioxidant defense

  • Published:
Biologia Plantarum

Abstract

An ascorbate-deficient semi-dwarf mutant asfL-1 was detected in 250 Gy γ-ray treated grass pea (Lathyrus sativus L.) cv. BioR-231. The mutant contained only 42 % of leaf and 20 % of root ascorbate content of mother control (MC). I investigated the possible causes of ascorbate deficiency and its effect on growth and antioxidant defense in control and 150 mM NaCl-treated seedling after 60 d growth period. Ascorbate deficiency was due to significant reduction in activities of monodehydroascorbate reductase and dehydroascorbate reductase as well as increase in ascorbate oxidase, leading to considerable decrease in redox state. Despite low ascorbate pool and decrease in ascorbate peroxidase activity, shoot and root biomass production in asfL-1 mutant were similar to MC plants, even at NaCl treatment. High accumulation of glutathione (GSH) coupled with high activities of GSH reductase, catalase, GSH peroxidase and peroxidase in both tissues of the mutant permitted efficient recycling of GSH and scavenging of H2O2 through well integrated catalase/peroxidase system, despite high superoxide dismutase activity under NaCl treatment. The collapse of this system led to inhibition of growth in NaCl-treated mother plants. Together, the results suggested that asfL-1 plants undertook a major reshuffle in its antioxidant defense machinery, which effectively counterbalanced the negative impact of ascorbate deficiency and remained unperturbed by NaCl treatment to maintain normal growth and biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AO:

ascorbate oxidase

APX:

ascorbate peroxidase

ASC:

ascorbate, reduced form

ASC-GSH cycle:

ascorbateglutathione cycle

asfL-1 :

ascorbate deficient type-1 mutant in Lathyrus sativus

BSO-L:

butathione-[S,R]-sulfoximine

CAT:

catalase

DHA:

dehydroascorbate

DHAR:

dehydroascorbate reductase

DTT:

dithiothreitol

GPX:

glutathione peroxidase

GR:

glutathione reductase

GSH:

glutathione, reduced form

GSSG:

glutathione, oxidized form

MC:

control mother plant

MDA:

malondialdehyde

MDHA:

monodehydroascorbate

MDHAR:

monodehydroascorbate reductase

MT:

treated mother plant

MuC, MuT:

mutant control and treated plants

POX:

peroxidase

ROS:

reactive oxygen species

SOD:

superoxide dismutase

References

  • Aebi, H.: Catalase in vitro. — Methods Enzymol. 105: 121–126, 1984.

    Article  PubMed  CAS  Google Scholar 

  • Agarwal, S., Pandey, V.: Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. — Biol. Plant. 48: 555–560, 2004.

    Article  CAS  Google Scholar 

  • Arrigoni, O.: Ascorbate system in plant development. — J. Bioenerg. Biomembr. 26: 407–419, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Asada, K.: Ascorbate peroxidase - a hydrogen peroxidescavenging enzyme in plants. — Physiol. Plant. 85: 235–241, 1992.

    Article  CAS  Google Scholar 

  • Beyer, W.F., Fridovich, I.: Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. — Ann. Biochem. 161: 559–566, 1987.

    Article  CAS  Google Scholar 

  • Carmagnol, F., Sinet, P.M., Jerome, H.: Selenium-dependent and non-selenium-dependent glutathione peroxidases in human tissue extracts. — Biochim. biophys. Acta 759: 49–57, 1983.

    Article  PubMed  CAS  Google Scholar 

  • Cheeseman, J.M.: Hydrogen peroxide concentrations in leaves under natural conditions. — J. exp. Bot. 10: 2435–2444, 2006.

    Article  Google Scholar 

  • Conklin, P.L., Williams, E.H., Last, R.L.: Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. — Proc. nat. Acad. Sci. USA 3: 9970–9974, 1996.

    Article  Google Scholar 

  • Dalton, D.A., Langeberg, L., Treneman, N.C.: Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules. — Physiol. Plant. 87: 365–370, 1993.

    Article  CAS  Google Scholar 

  • De Pinto, M.C., De Gara, L.: Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. — J. exp. Bot. 55: 2559–2569, 2004.

    Article  PubMed  Google Scholar 

  • Díaz-Vivancos, P., Barba-Espín, G., Clemente-Moreno, M.J., Hernández, J.A.: Characterization of antioxidant system during the vegetative development of pea plants. — Biol. Plant. 54: 76–82, 2010.

    Article  Google Scholar 

  • Drotar, A., Phelps, P., Fall, R.: Evidence for glutathione peroxidase activities in cultured plant cells. — Plant Sci. 42: 35–40, 1985.

    Article  CAS  Google Scholar 

  • Foyer, C.H., Noctor, G.: Ascorbate and glutathione: the heart of the redox hub. — Plant Physiol. 155: 2–18, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, O.W.: Glutathione and glutathione disulfide. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Pp. 521–529. Verlagsgesellschaft, Weinheim 1985.

    Google Scholar 

  • Halliwell, B.: Reactive species and antioxidants: redox biology is a fundamental theme of aerobic life. — Plant Physiol. 141: 312–322, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Hernández, J.A., Jiménez, A., Mullineaux, P., Sevilla, F.: Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. — Plant Cell Environ. 23: 853–862, 2000.

    Article  Google Scholar 

  • Hernández, M., Fernandez-Garcia, N., Díaz-Vivancos, P., Olmos, E.: A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. — J. exp. Bot. 61: 521–535, 2010.

    Article  PubMed  Google Scholar 

  • Law, M.Y., Charles, S.A., Halliwell, B.: Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplast. The effect of hydrogen peroxide and paraquat. — Biochem. J. 210: 899–903, 1983.

    PubMed  CAS  Google Scholar 

  • Lin, K.H., Pu, S.F.: Tissue- and genotype-specific ascorbate peroxidase expression in sweet potato in response to salt stress. — Biol. Plant. 54: 664–670, 2010.

    Article  CAS  Google Scholar 

  • Mahdavi, B., Sanavy, S.A.M.M.: Germination and seedling growth in grass pea (Lathyrus sativus L.) cultivars under salinity conditions. — Pak. J. Biol. Sci. 10: 273–279, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Maia, J.M., Costa de Macedo, C.E., Voigt, E.L., Freitas, J.B.S., Silveira, J.A.G.: Antioxidant enzymatic protection in leaves of two contrasting cowpea cultivars under salinity. — Biol. Plant. 54: 159–163, 2010.

    Article  CAS  Google Scholar 

  • Mallik, S., Nayak, M., Sahu, B.B., Panigrahi, A.K., Shaw, B.P.: Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. — Biol. Plant. 55: 191–195, 2011.

    Article  CAS  Google Scholar 

  • Maughan, S., Foyer, C.H.: Engineering and genetic approaches to modulating the glutathione network in plants. — Physiol. Plant. 126: 382–397, 2006.

    Article  CAS  Google Scholar 

  • Miao, Y., Lv, D., Wang, P., Wang, X-C., Chen, J., Miao, C., Song, C-P.: An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. — Plant Cell 18: 2749–2766, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Miller, G., Suzuki, N., Rizhsky, L., Hegie, A., Koussevitzky, S., Mittler, R.: Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. — Plant Physiol. 144: 1777–1785, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplast. — Plant Cell Physiol. 22:867–880, 1981.

    CAS  Google Scholar 

  • Navrot, N., Collin, V., Gualberto, J., Gelhaye, E., Hirasawa, M., Rey, P., Knaff, D.B., Issakidis, E., Jacquot, J.P., Rouhier, N.: Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. — Plant Physiol. 142: 1364–1379, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Niknam, V., Razavi, N., Ebrahimzadeh, H., Sharifizadeh, B.: Effect of NaCl on biomass, protein and proline contents, and antioxidant enzymes in seedlings and calli of two Trigonella species. — Biol. Plant. 50: 591–596, 2006.

    Article  CAS  Google Scholar 

  • Noctor, G., Gomez, L., Vanacker, H., Foyer, C.H.: Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. — J. exp. Bot. 53: 1283–1504, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Passardi, F., Penel, C., Dunand, C.: Performing the paradoxical: how plant peroxidases modify the cell wall. — Trends. Plant Sci. 9: 534–540, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Saher, S., Piqueras, A., Hellin, E., Olmos, E.: Hyperhydricity in micropropagated carnation shoots: the role of oxidative stress. — Physiol. Plant. 120: 152–161, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Takahama, I., Oniki, T.: Effects of ascorbate on the oxidation of derivatives of hydroxycinnamic acid and the mechanism of oxidation of sinapic acid by cell wall-bound peroxidases. — Plant Cell Physiol. 35: 593–600, 1994.

    CAS  Google Scholar 

  • Talukdar, D.: Development of cytogenetic stocks through induced mutagenesis in grass pea (Lathyrus sativus): Current status and future prospects in crop improvement. — Grain Legume 54: 30–31, 2009.

    Google Scholar 

  • Talukdar, D.: Flower and pod production, abortion, leaf injury, yield and seed neurotoxin levels in stable dwarf mutant lines of grass pea (Lathyrus sativus L.) differing in salt stress responses. — Int. J. Curr. Res. 2: 46–54, 2011a.

    Google Scholar 

  • Talukdar, D.: Effect of arsenic-induced toxicity on morphological traits of Trigonella foenum-graecum L. and Lathyrus sativus L during germination and early seedling growth. — Curr. Res. J. biol. Sci. 3: 116–123, 2011b.

    CAS  Google Scholar 

  • Talukdar, D.: Isolation and characterization of NaCl-tolerant mutations in two important legumes, Clitoria ternatea L. and Lathyrus sativus L.: induced mutagenesis and selection by salt stress. — J. med. Plants Res. 5: 3619–3628, 2011c.

    CAS  Google Scholar 

  • Talukdar, D., Biswas, A.K.: An induced internode mutant in grass pea. — In: Manna, G.K., Roy, S.C. (ed.): Perspectives in Cytology and Genetics. Vol. 12. Pp. 267–272. AICCG Publ., Kalyani 2006.

    Google Scholar 

  • Vaz Patto, M., Skiba, B., Pang, E., Ochatt, S., Lambein, F., Rubiales, F.: Lathyrus improvement for resistance against biotic and abiotic stresses: from classical breeding to marker assisted selection. — Euphytica 147:133–147, 2006.

    Article  Google Scholar 

  • Veljovic-Jovanovic, S.D., Pignocchi, C., Noctor, G., Foyer, C.H.: Low ascorbic acid in the vtc-1 mutant of Arabidopsis is associated with decreased growth and intracellular redistribution of the antioxidant system. — Plant Physiol. 127: 426–435, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Vernoux, T., Wilson, R.C., Seeley, K.A., Reichheld, J.P., Muroy, S., Brown, S., Maughan, S.C., Cobbett, C.S., Van Montagu, M., Inzè, D., May, M.J., Sung, Z.R.: The ROOT MERISTEMLESS/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. — Plant Cell 12: 97–110, 2000.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Talukdar.

Additional information

Acknowledgements: Author thanks Dr. Z. Hossain for linguistic revision of the article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talukdar, D. Ascorbate deficient semi-dwarf asfL1 mutant of Lathyrus sativus exhibits alterations in antioxidant defense. Biol Plant 56, 675–682 (2012). https://doi.org/10.1007/s10535-012-0245-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0245-5

Additional key words

Navigation