Biologia Plantarum

, Volume 56, Issue 4, pp 705–710 | Cite as

Cytosolic NADP-isocitrate dehydrogenase in Arabidopsis leaves and roots

  • M. Leterrier
  • J. B. Barroso
  • J. M. Palma
  • F. J. Corpas


NADP-dependent isocitrate dehydrogenase (NADP-ICDH) catalyses the production of NADPH, which is an essential component in the cellular homeostasis. In Arabidopsis, the kinetic parameters (K m and V max) of cytosolic NADP-ICDH were different in leaves and roots. In vitro applied H2O2 did not affect the NADP-ICDH activity in either organ, however, the reduced glutathione inhibited the activity in leaves but not in roots. On the other hand, S-nitrosoglutathione (a NO donor) and peroxynitrite depressed NADP-ICDH activity in leaves and roots.

Additional key words

hydrogen peroxide nitric oxide peroxynitrite reactive nitrogen species S-nitrosoglutathione 



glutathione reductase


reduced glutathione




NADPdependent isocitrate dehydrogenase


nitric oxide synthase


NADPH oxidase




polyvinyl difluoride


reactive nitrogen species


reactive oxygen species




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appenroth, K.J., Teller, S.: Are NADP-dependent isocitrate dehydrogenases and ferredoxin-dependent glutamate synthase co-regulated by the same photoreceptors? — Planta 218: 775–783, 2004.PubMedCrossRefGoogle Scholar
  2. Attucci, S., Rivoal, J., Brouquisse, R., Carde, J.P., Pradet, A., Raymond, P.: Characterization of a mitochondrial NADP-dependent isocitrate dehydrogenase in axes of germinating sunflower seeds. — Plant Sci. 102: 49–59, 1994.CrossRefGoogle Scholar
  3. Cellier, F., Conéjéro, G., Ricaud, L., Luu, D.T., Lepetit, M., Gosti, F., Casse F.: Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. — Plant J. 39: 834–846, 2004.PubMedCrossRefGoogle Scholar
  4. Chaki, M., Valderrama, R., Fernández-Ocaña, A.M., Carreras, A., López-Jaramillo, J., Luque, F., Palma, J.M., Pedrajas, J.R., Begara-Morales, J.C., Sánchez-Calvo, B., Gómez-Rodríguez, M.V., Corpas, F.J., Barroso, J.B.: Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. — J. exp. Bot. 60: 4221–4234, 2009.PubMedCrossRefGoogle Scholar
  5. Chen, R., Lemarechal, P., Vidal, J., Jacquot, J.P., Gadal, P.: Purification and comparative properties of the cytosolic isocitrate dehydrogenases (NADP) from pea (Pisum sativum) roots and green leaves. — Eur. J. Biochem. 175: 565–572, 1988.PubMedCrossRefGoogle Scholar
  6. Chen, R.D.: Plant NADP-dependent isocitrate dehydrogenases are predominantly localized in the cytosol. — Planta 207: 280–285, 1998.PubMedCrossRefGoogle Scholar
  7. Chen, R.D., Bismuth, E., Champigny, M.L., Gadal, P.: Chromatographic and immunological evidence that chloroplastic and cytosolic pea (Pisum sativum) NADP-isocitrate dehydrogenases are distinct isoenzymes. — Planta 178: 157–163, 1989.CrossRefGoogle Scholar
  8. Corpas, F.J., Barroso, J.B., Sandalio, L.M., Palma, J.M., Lupiáñez, J.A., Del Río, L.A.: Peroxisomal NADP-dependent isocitrate dehydrogenase. Characterization and activity regulation during natural senescence. — Plant Physiol. 121: 921–928, 1999b.PubMedCrossRefGoogle Scholar
  9. Corpas, F.J., Hayashi, M., Mano, S., Nishimura, M., Barroso, J.B.: Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants. — Plant Physiol. 151: 2083–2094, 2009b.PubMedCrossRefGoogle Scholar
  10. Corpas, F.J., Palma, J.M., del Río, L.A., Barroso, J.B.: Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. — New Phytol. 184: 9–14, 2009a.PubMedCrossRefGoogle Scholar
  11. Corpas, F.J., Trelease, R.N.: The plant 73 kDa peroxisomal membrane protein (PMP73) is immunorelated to molecular chaperones. — Eur. J. Cell Biol. 73: 49–57, 1997.PubMedGoogle Scholar
  12. Fieuw, S., Mullerrober, B., Gálvez, S., Willmitzer, L.: Cloning and expression analysis of the cytosolic NADP-dependent isocitrate dehydrogenase from potato — implications for nitrogen-metabolism. — Plant Physiol. 107: 905–913, 1995.PubMedCrossRefGoogle Scholar
  13. Foyer, C.H., Noctor, G.: Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. — Plant Cell. 17: 1866–1875, 2005.PubMedCrossRefGoogle Scholar
  14. Gallardo, F., Gálvez, S., Gadal, P., Cánovas, F.M.: Changes in NADP-linked isocitrate dehydrogenase during tomato fruit ripening — characterization of the predominant cytosolic enzyme from green and ripe pericarp. — Planta 196: 148–154, 1995.CrossRefGoogle Scholar
  15. Gálvez, S., Gadal, P.: On the function of the NADP-dependent isocitrate dehydrogenase isoenzymes in living organisms. — Plant Sci. 105: 1–14, 1995.CrossRefGoogle Scholar
  16. Gálvez, S., Hodges, M., Bismuth, E., Samson, I., Teller, S., Gadal, P.: Purification and characterization of a fully active recombinant tobacco cytosolic NADP-dependent isocitrate dehydrogenase in Escherichia coli — evidence for a role for the N-terminal region in enzyme-activity. — Arch. Biochem. Biophys. 323: 164–168, 1995.PubMedCrossRefGoogle Scholar
  17. Gálvez, S., Lancien, M., Hodges, M.: Are isocitrate dehydrogenases and 2-oxoglutarate involved in the regulation of glutamate synthesis? — Trends Plant Sci. 4: 484–490, 1999.PubMedCrossRefGoogle Scholar
  18. Hodges, M., Flesch, V., Gálvez, S., Bismuth E.: Higher plant NADP-dependent isocitrate dehydrogenases, ammonium assimilation and NADPH production. — Plant Physiol. Biochem. 41: 577–585, 2003.CrossRefGoogle Scholar
  19. Leterrier, M., Del Río, L.A., Corpas F.J.: Cytosolic NADPisocitrate dehydrogenase of pea plants: Genomic clone characterization and functional analysis under abiotic stress conditions. — Free Radical Res. 41: 191–199, 2007.CrossRefGoogle Scholar
  20. Maeng, O., Kim, Y.C., Shin, H.J., Lee, J.O., Huh, T.L., Kang, K.I., Kim, Y.S., Paik, S.G., Lee, H.: Cytosolic NADP-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species. — Biochem. biophys. Res. Commun. 317: 558–64, 2004.PubMedCrossRefGoogle Scholar
  21. Mateos, R.M., Bonilla-Valverde, D., Del Río, L.A., Palma, J.M., Corpas, F.J.: NADP-dehydrogenases from pepper fruits: effect of maturation. — Physiol. Plant. 135: 130–139, 2009.PubMedCrossRefGoogle Scholar
  22. McCarthy-Suárez, I., Gómez, M., Del Río, L.A., Palma, J.M.: Role of peroxisomes in the oxidative injury induced by 2,4-dichlorophenoxyacetic acid in leaves of pea plants. — Biol. Plant. 55: 485–492, 2011.CrossRefGoogle Scholar
  23. Mhamdi, A., Mauve, C., Gouia, H., Saindrenan, P., Hodges, M., Noctor, G.: Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in Arabidopsis leaves. — Plant Cell Environ. 33: 1112–1123, 2010.PubMedGoogle Scholar
  24. Palomo, J., Gallardo, F., Suárez, M.F., Canovas, F.M.: Purification and characterization of NADP-linked isocitrate dehydrogenase from scots pine. Evidence for different physiological roles of the enzyme in primary development. — Plant Physiol. 118: 617–626, 1998.PubMedCrossRefGoogle Scholar
  25. Pascual, M.B., Molina-Rueda, J.J., Cánovas, F.M., Gallardo, F.: Spatial distribution of cytosolic NADP-isocitrate dehydrogenase in pine embryos and seedlings. — Tree Physiol. 28: 1773–1782, 2008.PubMedCrossRefGoogle Scholar
  26. Rasmusson, A.G., Møller. I.M.: NADP-utilizing enzymes in the matrix of plant mitochondria. — Plant Physiol. 94: 1012–1018, 1990.PubMedCrossRefGoogle Scholar
  27. Sagi, M., Fluhr, R.: Production of reactive oxygen species by plant NADPH oxidases. — Plant Physiol. 141: 336–340, 2006.PubMedCrossRefGoogle Scholar
  28. Scheible, W.R., Krapp, A., Stitt, M.: Reciprocal diurnal changes of phosphoenolpyruvate carboxylase expression and cytosolic pyruvate kinase, citrate synthase and NADP-isocitrate dehydrogenase expression regulate organic acid metabolism during nitrate assimilation in tobacco leaves. — Plant Cell Environ. 23: 1155–1167, 2000.CrossRefGoogle Scholar
  29. Shorrosh, B.S., Dixon, R.A.: Molecular characterization and expression of an isocitrate dehydrogenase from alfalfa (Medicago sativa L). — Plant mol. Biol. 20: 801–807, 1992.PubMedCrossRefGoogle Scholar
  30. Spinola, M.C., Perez-Ruiz, J.M., Pulido, P., Kirchsteiger, K., Guinea, M., Gonzalez, M., Cejudo, F.J.: NTRC new ways of using NADPH in the chloroplast. — Physiol. Plant.133: 516–524, 2008.Google Scholar
  31. Stengel, A., Benz, P., Balsera, M., Soll, J., Bölter, B.: TIC62 redox-regulated translocon composition and dynamics. — J. biol. Chem. 283: 6656–67, 2008.PubMedCrossRefGoogle Scholar
  32. Sulpice, R., Sienkiewicz-Porzucek, A., Osorio, S., Krahnert, I., Stitt, M., Fernie, A.R., Nunes-Nesi, A.: Mild reductions in cytosolic NADP-dependent isocitrate dehydrogenase activity result in lower amino acid contents and pigmentation without impacting growth. — Amino Acids 39: 1055–1066, 2010.PubMedCrossRefGoogle Scholar
  33. Tamoi, M., Miyazaki, T., Fukamizo, T., Shigeoka, S.: The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. — Plant J. 42: 504–13, 2005.PubMedCrossRefGoogle Scholar
  34. Udvardi, M.K., McDermott, T.R., Kahn, M.L.: Isolation and characterization of a cDNA-encoding NADP-specific isocitrate dehydrogenase from soybean (Glycine max). — Plant mol.Biol. 21: 739–752, 1993.PubMedCrossRefGoogle Scholar
  35. Valderrama, R., Corpas, F.J., Carreras, A., Gómez-Rodríguez, M.V., Chaki, M., Pedrajas, J.R., Fernández-Ocaña, A., Del Río, L.A., Barroso J.B.: The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants.— Plant Cell Environ. 29: 1449–1459, 2006.PubMedCrossRefGoogle Scholar
  36. Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V., Provart, N.J.: An electronic fluorescent pictograph browser for exploring and analyzing large-scale biological data sets. — Plos One 2: e718, 2007.PubMedCrossRefGoogle Scholar
  37. Yang, E.S., Lee, J.H., Park, J.W.: Ethanol induces peroxynitritemediated toxicity through inactivation of NADP-dependent isocitrate dehydrogenase and superoxide dismutase. — Biochimie 90: 1316–24, 2008.PubMedCrossRefGoogle Scholar
  38. Yang, E.S., Richter, C., Chun, J.S., Huh, T.L., Kang, S.S., Park, J.W.: Inactivation of NADP-dependent isocitrate dehydrogenase by nitric oxide. — Free Radical Biol. Med. 33: 927–37, 2002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. Leterrier
    • 1
  • J. B. Barroso
    • 2
  • J. M. Palma
    • 1
  • F. J. Corpas
    • 1
  1. 1.Departamento de Bioquímica, Biología Celular y Molecular de PlantasEstación Experimental del Zaidín, CSICGranadaSpain
  2. 2.Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC, Departamento de Bioquímica y Biología MolecularUniversidad de JaénJaénSpain

Personalised recommendations