Advertisement

Biologia Plantarum

, Volume 56, Issue 4, pp 705–710 | Cite as

Cytosolic NADP-isocitrate dehydrogenase in Arabidopsis leaves and roots

  • M. Leterrier
  • J. B. Barroso
  • J. M. Palma
  • F. J. Corpas
Article

Abstract

NADP-dependent isocitrate dehydrogenase (NADP-ICDH) catalyses the production of NADPH, which is an essential component in the cellular homeostasis. In Arabidopsis, the kinetic parameters (K m and V max) of cytosolic NADP-ICDH were different in leaves and roots. In vitro applied H2O2 did not affect the NADP-ICDH activity in either organ, however, the reduced glutathione inhibited the activity in leaves but not in roots. On the other hand, S-nitrosoglutathione (a NO donor) and peroxynitrite depressed NADP-ICDH activity in leaves and roots.

Additional key words

hydrogen peroxide nitric oxide peroxynitrite reactive nitrogen species S-nitrosoglutathione 

Abbreviations

GR

glutathione reductase

GSH

reduced glutathione

GSNO

S-nitrosoglutathione

NADP-ICDH

NADPdependent isocitrate dehydrogenase

NOS

nitric oxide synthase

NOX

NADPH oxidase

ONOO

peroxynitrite

PVDF

polyvinyl difluoride

RNS

reactive nitrogen species

ROS

reactive oxygen species

SIN-1

3-morpholinosydnonimine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appenroth, K.J., Teller, S.: Are NADP-dependent isocitrate dehydrogenases and ferredoxin-dependent glutamate synthase co-regulated by the same photoreceptors? — Planta 218: 775–783, 2004.PubMedCrossRefGoogle Scholar
  2. Attucci, S., Rivoal, J., Brouquisse, R., Carde, J.P., Pradet, A., Raymond, P.: Characterization of a mitochondrial NADP-dependent isocitrate dehydrogenase in axes of germinating sunflower seeds. — Plant Sci. 102: 49–59, 1994.CrossRefGoogle Scholar
  3. Cellier, F., Conéjéro, G., Ricaud, L., Luu, D.T., Lepetit, M., Gosti, F., Casse F.: Characterization of AtCHX17, a member of the cation/H+ exchangers, CHX family, from Arabidopsis thaliana suggests a role in K+ homeostasis. — Plant J. 39: 834–846, 2004.PubMedCrossRefGoogle Scholar
  4. Chaki, M., Valderrama, R., Fernández-Ocaña, A.M., Carreras, A., López-Jaramillo, J., Luque, F., Palma, J.M., Pedrajas, J.R., Begara-Morales, J.C., Sánchez-Calvo, B., Gómez-Rodríguez, M.V., Corpas, F.J., Barroso, J.B.: Protein targets of tyrosine nitration in sunflower (Helianthus annuus L.) hypocotyls. — J. exp. Bot. 60: 4221–4234, 2009.PubMedCrossRefGoogle Scholar
  5. Chen, R., Lemarechal, P., Vidal, J., Jacquot, J.P., Gadal, P.: Purification and comparative properties of the cytosolic isocitrate dehydrogenases (NADP) from pea (Pisum sativum) roots and green leaves. — Eur. J. Biochem. 175: 565–572, 1988.PubMedCrossRefGoogle Scholar
  6. Chen, R.D.: Plant NADP-dependent isocitrate dehydrogenases are predominantly localized in the cytosol. — Planta 207: 280–285, 1998.PubMedCrossRefGoogle Scholar
  7. Chen, R.D., Bismuth, E., Champigny, M.L., Gadal, P.: Chromatographic and immunological evidence that chloroplastic and cytosolic pea (Pisum sativum) NADP-isocitrate dehydrogenases are distinct isoenzymes. — Planta 178: 157–163, 1989.CrossRefGoogle Scholar
  8. Corpas, F.J., Barroso, J.B., Sandalio, L.M., Palma, J.M., Lupiáñez, J.A., Del Río, L.A.: Peroxisomal NADP-dependent isocitrate dehydrogenase. Characterization and activity regulation during natural senescence. — Plant Physiol. 121: 921–928, 1999b.PubMedCrossRefGoogle Scholar
  9. Corpas, F.J., Hayashi, M., Mano, S., Nishimura, M., Barroso, J.B.: Peroxisomes are required for in vivo nitric oxide accumulation in the cytosol following salinity stress of Arabidopsis plants. — Plant Physiol. 151: 2083–2094, 2009b.PubMedCrossRefGoogle Scholar
  10. Corpas, F.J., Palma, J.M., del Río, L.A., Barroso, J.B.: Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. — New Phytol. 184: 9–14, 2009a.PubMedCrossRefGoogle Scholar
  11. Corpas, F.J., Trelease, R.N.: The plant 73 kDa peroxisomal membrane protein (PMP73) is immunorelated to molecular chaperones. — Eur. J. Cell Biol. 73: 49–57, 1997.PubMedGoogle Scholar
  12. Fieuw, S., Mullerrober, B., Gálvez, S., Willmitzer, L.: Cloning and expression analysis of the cytosolic NADP-dependent isocitrate dehydrogenase from potato — implications for nitrogen-metabolism. — Plant Physiol. 107: 905–913, 1995.PubMedCrossRefGoogle Scholar
  13. Foyer, C.H., Noctor, G.: Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. — Plant Cell. 17: 1866–1875, 2005.PubMedCrossRefGoogle Scholar
  14. Gallardo, F., Gálvez, S., Gadal, P., Cánovas, F.M.: Changes in NADP-linked isocitrate dehydrogenase during tomato fruit ripening — characterization of the predominant cytosolic enzyme from green and ripe pericarp. — Planta 196: 148–154, 1995.CrossRefGoogle Scholar
  15. Gálvez, S., Gadal, P.: On the function of the NADP-dependent isocitrate dehydrogenase isoenzymes in living organisms. — Plant Sci. 105: 1–14, 1995.CrossRefGoogle Scholar
  16. Gálvez, S., Hodges, M., Bismuth, E., Samson, I., Teller, S., Gadal, P.: Purification and characterization of a fully active recombinant tobacco cytosolic NADP-dependent isocitrate dehydrogenase in Escherichia coli — evidence for a role for the N-terminal region in enzyme-activity. — Arch. Biochem. Biophys. 323: 164–168, 1995.PubMedCrossRefGoogle Scholar
  17. Gálvez, S., Lancien, M., Hodges, M.: Are isocitrate dehydrogenases and 2-oxoglutarate involved in the regulation of glutamate synthesis? — Trends Plant Sci. 4: 484–490, 1999.PubMedCrossRefGoogle Scholar
  18. Hodges, M., Flesch, V., Gálvez, S., Bismuth E.: Higher plant NADP-dependent isocitrate dehydrogenases, ammonium assimilation and NADPH production. — Plant Physiol. Biochem. 41: 577–585, 2003.CrossRefGoogle Scholar
  19. Leterrier, M., Del Río, L.A., Corpas F.J.: Cytosolic NADPisocitrate dehydrogenase of pea plants: Genomic clone characterization and functional analysis under abiotic stress conditions. — Free Radical Res. 41: 191–199, 2007.CrossRefGoogle Scholar
  20. Maeng, O., Kim, Y.C., Shin, H.J., Lee, J.O., Huh, T.L., Kang, K.I., Kim, Y.S., Paik, S.G., Lee, H.: Cytosolic NADP-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species. — Biochem. biophys. Res. Commun. 317: 558–64, 2004.PubMedCrossRefGoogle Scholar
  21. Mateos, R.M., Bonilla-Valverde, D., Del Río, L.A., Palma, J.M., Corpas, F.J.: NADP-dehydrogenases from pepper fruits: effect of maturation. — Physiol. Plant. 135: 130–139, 2009.PubMedCrossRefGoogle Scholar
  22. McCarthy-Suárez, I., Gómez, M., Del Río, L.A., Palma, J.M.: Role of peroxisomes in the oxidative injury induced by 2,4-dichlorophenoxyacetic acid in leaves of pea plants. — Biol. Plant. 55: 485–492, 2011.CrossRefGoogle Scholar
  23. Mhamdi, A., Mauve, C., Gouia, H., Saindrenan, P., Hodges, M., Noctor, G.: Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in Arabidopsis leaves. — Plant Cell Environ. 33: 1112–1123, 2010.PubMedGoogle Scholar
  24. Palomo, J., Gallardo, F., Suárez, M.F., Canovas, F.M.: Purification and characterization of NADP-linked isocitrate dehydrogenase from scots pine. Evidence for different physiological roles of the enzyme in primary development. — Plant Physiol. 118: 617–626, 1998.PubMedCrossRefGoogle Scholar
  25. Pascual, M.B., Molina-Rueda, J.J., Cánovas, F.M., Gallardo, F.: Spatial distribution of cytosolic NADP-isocitrate dehydrogenase in pine embryos and seedlings. — Tree Physiol. 28: 1773–1782, 2008.PubMedCrossRefGoogle Scholar
  26. Rasmusson, A.G., Møller. I.M.: NADP-utilizing enzymes in the matrix of plant mitochondria. — Plant Physiol. 94: 1012–1018, 1990.PubMedCrossRefGoogle Scholar
  27. Sagi, M., Fluhr, R.: Production of reactive oxygen species by plant NADPH oxidases. — Plant Physiol. 141: 336–340, 2006.PubMedCrossRefGoogle Scholar
  28. Scheible, W.R., Krapp, A., Stitt, M.: Reciprocal diurnal changes of phosphoenolpyruvate carboxylase expression and cytosolic pyruvate kinase, citrate synthase and NADP-isocitrate dehydrogenase expression regulate organic acid metabolism during nitrate assimilation in tobacco leaves. — Plant Cell Environ. 23: 1155–1167, 2000.CrossRefGoogle Scholar
  29. Shorrosh, B.S., Dixon, R.A.: Molecular characterization and expression of an isocitrate dehydrogenase from alfalfa (Medicago sativa L). — Plant mol. Biol. 20: 801–807, 1992.PubMedCrossRefGoogle Scholar
  30. Spinola, M.C., Perez-Ruiz, J.M., Pulido, P., Kirchsteiger, K., Guinea, M., Gonzalez, M., Cejudo, F.J.: NTRC new ways of using NADPH in the chloroplast. — Physiol. Plant.133: 516–524, 2008.Google Scholar
  31. Stengel, A., Benz, P., Balsera, M., Soll, J., Bölter, B.: TIC62 redox-regulated translocon composition and dynamics. — J. biol. Chem. 283: 6656–67, 2008.PubMedCrossRefGoogle Scholar
  32. Sulpice, R., Sienkiewicz-Porzucek, A., Osorio, S., Krahnert, I., Stitt, M., Fernie, A.R., Nunes-Nesi, A.: Mild reductions in cytosolic NADP-dependent isocitrate dehydrogenase activity result in lower amino acid contents and pigmentation without impacting growth. — Amino Acids 39: 1055–1066, 2010.PubMedCrossRefGoogle Scholar
  33. Tamoi, M., Miyazaki, T., Fukamizo, T., Shigeoka, S.: The Calvin cycle in cyanobacteria is regulated by CP12 via the NAD(H)/NADP(H) ratio under light/dark conditions. — Plant J. 42: 504–13, 2005.PubMedCrossRefGoogle Scholar
  34. Udvardi, M.K., McDermott, T.R., Kahn, M.L.: Isolation and characterization of a cDNA-encoding NADP-specific isocitrate dehydrogenase from soybean (Glycine max). — Plant mol.Biol. 21: 739–752, 1993.PubMedCrossRefGoogle Scholar
  35. Valderrama, R., Corpas, F.J., Carreras, A., Gómez-Rodríguez, M.V., Chaki, M., Pedrajas, J.R., Fernández-Ocaña, A., Del Río, L.A., Barroso J.B.: The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants.— Plant Cell Environ. 29: 1449–1459, 2006.PubMedCrossRefGoogle Scholar
  36. Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V., Provart, N.J.: An electronic fluorescent pictograph browser for exploring and analyzing large-scale biological data sets. — Plos One 2: e718, 2007.PubMedCrossRefGoogle Scholar
  37. Yang, E.S., Lee, J.H., Park, J.W.: Ethanol induces peroxynitritemediated toxicity through inactivation of NADP-dependent isocitrate dehydrogenase and superoxide dismutase. — Biochimie 90: 1316–24, 2008.PubMedCrossRefGoogle Scholar
  38. Yang, E.S., Richter, C., Chun, J.S., Huh, T.L., Kang, S.S., Park, J.W.: Inactivation of NADP-dependent isocitrate dehydrogenase by nitric oxide. — Free Radical Biol. Med. 33: 927–37, 2002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. Leterrier
    • 1
  • J. B. Barroso
    • 2
  • J. M. Palma
    • 1
  • F. J. Corpas
    • 1
  1. 1.Departamento de Bioquímica, Biología Celular y Molecular de PlantasEstación Experimental del Zaidín, CSICGranadaSpain
  2. 2.Grupo de Señalización Molecular y Sistemas Antioxidantes en Plantas, Unidad Asociada al CSIC, Departamento de Bioquímica y Biología MolecularUniversidad de JaénJaénSpain

Personalised recommendations