Biologia Plantarum

, Volume 57, Issue 1, pp 105–112 | Cite as

Accumulation of WCS120 and DHN5 proteins in differently frost-tolerant wheat and barley cultivars grown under a broad temperature scale

  • K. Kosová
  • P. Vítámvás
  • P. Prášilová
  • I. T. Prášil


Proteins WCS120 and DHN5 are known as the major cold-inducible dehydrins in wheat and barley plants, respectively. WCS120 and DHN5 relative accumulation increased exponentially along with a growth temperature decline in the range from optimum to cold temperatures. Even at optimum growth temperatures, the most frost-tolerant wheat and barley cultivars can be distinguished from the remaining ones according to dehydrin relative accumulation. The highly tolerant wheat and barley cultivars started accumulating dehydrins at higher growth temperatures and reached higher dehydrin amounts than the less tolerant ones. Statistically significant correlations between lethal temperature for 50 % of the samples (LT50) and dehydrin relative accumulation have been found at all growth temperatures (5, 10, 15 and 20 °C) for WCS120 in wheats and at 5 and 10 °C for DHN5 in barleys. Analogous relationships between dehydrin relative accumulation at different growth temperatures and plant acquired frost tolerance have been proved for wheat WCS120 and barley DHN5.

Additional key words

cold acclimation dehydrins lethal temperature Hordeum vulgare Triticum aestivum 



alkaline phosphatase


cold acclimation


C-repeat binding factor




degree days (days of cultivation multiplied by growth temperature)






frost tolerance


goat anti-rabbit (secondary antibody)


late embryogenesis abundant


lethal temperature when 50 % of sample die


polyacrylamide gel electro-phoresis


sodium dodecyl sulfate


Tris-buffered saline


Tween-20 Tris-buffered saline


wheat cold-specific


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Badawi, M., Danyluk, J., Boucho, B., Houde, M., Sarhan, F.: The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. - Mol. Genet. Genomics 277: 533–554, 2007.PubMedCrossRefGoogle Scholar
  2. Bradford, M.M.: A rapid and sensitive method for the quantities of protein by an improved protein-dye binding assay. - Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  3. Bravo, L.A., Close, T.J., Corcuera, L.J., Guy, C.L.: Characterization of an 80-kDa dehydrin-like protein in barley responsive to cold acclimation. - Physiol. Plant. 106: 177–183, 1999.CrossRefGoogle Scholar
  4. Bravo, L.A., Gallardo, J., Navarrete, A., Olave, N., Martínez, J., Alberdi, M., Close, T.J., Corcuera, L.J.: Cryoprotective activity of a cold-induced dehydrin purified from barley. - Physiol. Plant. 118: 262–269, 2003.CrossRefGoogle Scholar
  5. Campoli, C., Matus-Cádiz, M.A., Pozniak, C.J., Cattivelli, L., Fowler, D.B.: Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. - Mol. Genet. Genomics 282: 141–152, 2009.PubMedCrossRefGoogle Scholar
  6. Choi, D.W., Zhu, B., Close, T.J.: The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv. Dicktoo. - Theor. appl. Genet. 98: 1234–1247, 1999.CrossRefGoogle Scholar
  7. Close, T.J.: Dehydrins: A commonalty in the response of plants to dehydration and low temperature. - Physiol. Plant. 100: 291–296, 1997.CrossRefGoogle Scholar
  8. Close, T.J., Fenton, R.D., Moonan, F.: A view of plant dehydrins using antibodies specific to the carboxy-terminal peptide. - Plant mol. Biol. 23: 279–286, 1993.PubMedCrossRefGoogle Scholar
  9. Crosatti, C., Soncini, C., Stanca, A.M., Cattivelli, L.: The accumulation of a cold-regulated chloroplastic protein is light-dependent. - Planta 196: 458–463, 1995.PubMedCrossRefGoogle Scholar
  10. Danyluk, J., Kane, N.A., Breton, G., Limin, A.E., Fowler, D.B., Sarhan, F.: TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. - Plant Physiol. 132: 1849–1860, 2003.PubMedCrossRefGoogle Scholar
  11. Fowler, D.B.: Cold acclimation threshold induction temperatures in cereals. - Crop Sci. 48: 1147–1154, 2008.CrossRefGoogle Scholar
  12. Fowler, D.B., Limin, A.E., Ritchie, J.T.: Low-temperature tolerance in cereals: model and genetic interpretation. - Crop Sci. 39: 626–633, 1999.CrossRefGoogle Scholar
  13. Fowler, D.B., Breton, G., Limin, A.E., Mahfoozi, S., Sarhan, F.: Photoperiod and temperature interactions regulate low-temperature-induced gene expression in barley. - Plant Physiol. 127: 1676–1681, 2001.PubMedCrossRefGoogle Scholar
  14. Galiba, G., Vágújfalvi, A., Li, C., Soltész, A., Dubcovsky, J.: Regulatory genes involved in the determination of frost tolerance in temperate cereals. - Plant Sci. 176: 12–19, 2009.CrossRefGoogle Scholar
  15. Ganeshan, S., Vítámvás, P., Fowler, D.B., Chibbar, R.N.: Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. - J. exp. Bot. 59: 2393–2402, 2008.PubMedCrossRefGoogle Scholar
  16. Holková, L., Prášil, I.T., Bradáčová, M., Vítámvás, P., Chloupek, O.: Screening for frost tolerance in wheat using the expression of dehydrin genes Wcs120 and Wdhn13 at 17 °C. - Plant Breed. 128: 420–422, 2009.CrossRefGoogle Scholar
  17. Houde, M., Dhindsa, R.S., Sarhan, F.: A molecular marker to select for freezing tolerance in Gramineae. - Mol. gen. Genet. 234: 43–48, 1992.PubMedGoogle Scholar
  18. Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberté, S., Sarhan, F.: Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. - Plant J. 8: 583–593, 1995.PubMedCrossRefGoogle Scholar
  19. Janáček, J., Prášil, I.: Quantification of plant frost injury by nonlinear fitting of an S-shaped function. - Cryo-Letters 12: 47–52, 1991.Google Scholar
  20. Klíma, M., Vítámvás, P., Zelenková, S., Vyvadilová, M., Prášil, I.T.: Dehydrin and proline content in Brassica napus and B. carinata under cold stress at two irradiances. - Biol. Plant. 56: 157–161, 2012.CrossRefGoogle Scholar
  21. Knox, A.K., Li, C., Vágújfalvi, A., Galiba, G., Stockinger, E.J., Dubcovsky, J.: Identification of candidate CBF genes for the frost tolerance locus Fr-A m 2 in Triticum monococcum. - Plant mol. Biol. 67: 257–270, 2008.PubMedCrossRefGoogle Scholar
  22. Knox, A.K., Dhillon, T., Cheng, H., Tondelli, A., Pecchioni N., Stockinger, E.J.: CBF gene copy number variation at Frost-resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. - Theor. appl. Genet. 121: 21–35, 2010.PubMedCrossRefGoogle Scholar
  23. Kosová, K., Vítámvás, P., Prášil, I.T.: The role of dehydrins in plant response to cold. - Biol. Plant. 51: 601–617, 2007.CrossRefGoogle Scholar
  24. Kosová K., Holková, L., Prášil, I.T., Prášilová, P., Bradáčová, M., Vítámvás, P., Čapková, V.: Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare). - J. plant Physiol. 165: 1142–1151, 2008.PubMedCrossRefGoogle Scholar
  25. Kosová K., Prášil I.T., Vítámvás P.: Role of dehydrins in plant stress response. - In: Pessarakli M. (ed.): Handbook of Plant and Crop Stress. 3rd Ed. Pp. 239–285. CRC Press, Taylor & Francis, Boca Raton 2010.CrossRefGoogle Scholar
  26. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. - Nature 277: 680–685, 1970.CrossRefGoogle Scholar
  27. Miller, A.K., Galiba, G., Dubcovsky, J.: A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A m 2 in Triticum monococcum. - Mol. Genet. Genomics 275: 193–203, 2006.PubMedCrossRefGoogle Scholar
  28. Prášil, I.T., Prášilová, P., Mařík, P.: Comparative study of direct and indirect evaluations of frost tolerance in barley. - Field Crops Res. 102: 1–8, 2007.CrossRefGoogle Scholar
  29. Rorat, T.: Plant dehydrins — tissue location, structure and functions. - Cell. mol. Biol. Lett. 11: 536–556, 2006.PubMedCrossRefGoogle Scholar
  30. Sarhan, F., Ouellet, F., Vazquez-Tello, A.: The wheat wcs120 gene family. A useful model to understand the molecular genetics of freezing tolerance in cereals. - Physiol. Plant. 101: 439–445, 1997.CrossRefGoogle Scholar
  31. Stockinger, E.J., Skinner, J.S., Gardner, K.G., Francia, E., Pecchioni, N.: Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. - Plant J. 51: 308–321, 2007.PubMedCrossRefGoogle Scholar
  32. Thomashow, M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. - Annu. Rev. plant Physiol. plant mol. Biol. 50: 571–599, 1999.PubMedCrossRefGoogle Scholar
  33. Tommasini, L., Svensson, J.T., Rodriguez, E.M., Wahid, A., Malatrasi, M., Kato, K., Wanamaker, S., Resnik, J., Close, T.J.: Dehydrin gene expression provides an indicator of low temperature and drought stress: transcriptome-based analysis of barley (Hordeum vulgare L.). - Funct. integr. Genomics 8: 387–405, 2008.PubMedCrossRefGoogle Scholar
  34. Tondelli, A., Francia, E., Barabaschi, D., Pasquariello, M., Pecchioni, N.: Inside the CBF locus in Poaceae. - Plant Sci. 180: 39–45, 2011.PubMedCrossRefGoogle Scholar
  35. Vágújfalvi, A., Crosatti, C., Galiba, G., Dubcovsky, J., Cattivelli, L.: Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in frost-tolerant and frost-sensitive genotypes. - Mol. gen. Genet. 263: 194–200, 2000.PubMedCrossRefGoogle Scholar
  36. Vágújfalvi, A., Galiba, G., Cattivelli, L., Dubcovsky, J.: 2003: The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A. - Mol. gen. Genomics 269: 60–67, 2003.Google Scholar
  37. Van Zee, K., Chen, F.Q., Hayes, P.M., Close, T.J., Chen, T.H.H.: Cold-specific induction of a dehydrin gene family member in barley. - Plant Physiol. 108: 1233–1239, 1995.PubMedGoogle Scholar
  38. Vítámvás, P., Saalbach, G., Prášil, I.T., Čapková, V., Opatrná, J., Jahoor, A.: WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat. - J. plant Physiol. 164: 1197–1207, 2007.PubMedCrossRefGoogle Scholar
  39. Vítámvás, P., Prášil, I.T.: WCS120 protein family and frost tolerance during cold acclimation, deacclimation and reacclimation of winter wheat. - Plant Physiol. Biochem. 46: 970–976, 2008.PubMedCrossRefGoogle Scholar
  40. Vítámvás, P., Kosová, K., Prášilová, P., Prášil, I.T.: Accumulation of WCS120 protein in wheat cultivars grown at 9°C or 17°C in relation to their winter survival. - Plant Breed. 129: 611–616, 2010.CrossRefGoogle Scholar
  41. Zhu, B., Choi, D.-W., Fenton, R., Close, T.J.: Expression of the barley dehydrin multigene family and the development of freezing tolerance. - Mol. gen. Genet. 264: 145–153, 2000.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • K. Kosová
    • 1
  • P. Vítámvás
    • 1
  • P. Prášilová
    • 1
  • I. T. Prášil
    • 1
  1. 1.Department of Genetics and Plant BreedingCrop Research InstitutePrague 6 - RuzyněCzech Republic

Personalised recommendations