Biologia Plantarum

, Volume 56, Issue 4, pp 771–774 | Cite as

Stomatal NH3 compensation point and its metabolic regulation in senescence phenotypes of Nicotiana tabacum

  • W. J. Duan
  • T. Z. Yang
  • Y. Dai
  • D. L. Li
  • X. Q. Zhang
  • H. B. Liu
  • N. Li
  • C. G. Wang
Brief Communication

Abstract

We compared stomatal ammonia compensation point (χs) and its metabolic regulation in tobacco (Nicotiana tabacum) leaves of a quick-leaf-senescence phenotype ZY90 and a slow-leaf-senescence phenotype NC89. Compared with NC89, ZY90 had significantly higher χs values between 40 and 60 d after leaf sprouting in spite of its lower nitrogen content. During the same time, a steeper decline in glutamine synthetase activity was detected in ZY90 leaves, simultaneously with a steep increase in χs. These results suggested that the quick leaf senescence phenotype exhibited high NH3 emission potential due to efficient nitrogen recycling and remobilization, and glutamine synthetase played a key role in regulating χs in ZY90.

Additional key words

glutamine synthetase nitrogen content quick- and slow-leaf-senescence phenotypes tobacco 

Abbreviations

DAS

days after leaf sprouting

GDH

glutamate dehydrogenase

GS

glutamine synthetase

[H+]apo

apoplastic H+ content

[NH4+]apo

apoplastic NH4+ content

pHapo

apoplastic pH

χs

ammonia stomatal compensation point

References

  1. Agüera, E., Cabello, P.: Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus) plants. — Physiol. Plant. 138: 256–267, 2010.PubMedCrossRefGoogle Scholar
  2. Atkins, P.W. (ed.): Physical Chemistry (4th Ed.). — Oxford University Press, Oxford 1990.Google Scholar
  3. Cosgrove, D.J., Cleland, R.E.: Solutes in the free space of growing tissues. — Plant Physiol. 72: 326–331, 1983.PubMedCrossRefGoogle Scholar
  4. Herrmann, B., Mattsson M., Jones, S.K., Cellier, P., Milford, C., Sutton, M.A., Schjoerring, J.K., Neftel, A.: Vertical structure and diurnal variability of ammonia exchange potential within an intensively managed grass canopy. — Biogeosciences 6: 15–23, 2009.CrossRefGoogle Scholar
  5. Horneck, D.A., Miller, R.O.: Determination of total nitrogen in plant tissue. — In: Karla, Y.P. (ed.): Handbook of Reference Methods for Plant Analysis. Pp. 75–83. CRC Press, New York 1998.Google Scholar
  6. Husted, S., Hebbern, C.A., Mattsson, M., Schjoerring, J.K.: Determination of ammonium, low molecular weight amines and amides in plant tissue. — Physiol. Plant 109: 167–179, 2000.CrossRefGoogle Scholar
  7. Husted, S., Schjoerring, J.K.: Apoplastic pH and ammonium concentration in leaves of Brassica napus L. — Plant Physiol. 109: 1453–1460, 1995.PubMedGoogle Scholar
  8. Husted, S., Schjoerring, J.K.: Ammonia flux between oilseed rape plants and the atmosphere in response to changes in leaf temperature, light intensity and air humidity. — Plant Physiol. 112: 67–74, 1996.PubMedGoogle Scholar
  9. Masclaux, C., Valadier, M.H., Brugière, N., Morot-Gaudry, J.F., Hirel, B.: Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. — Planta 211: 510–518, 2000.PubMedCrossRefGoogle Scholar
  10. Masclaux-Daubresse, D., Reisdorf-Cren, M., Pageau, K., Lelandais, M., Grandjean, O., Kronenberger, J., Valadier, M., Feraud, M., Jouglet, T., Suzuki A.: Glutamine synthetaseglutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. — Plant Physiol. 140: 444–456, 2006.PubMedCrossRefGoogle Scholar
  11. Mattsson, M., Häusler, R.E., Leegood, R.C., Lea, P., Schjoerring, J.K.: Leaf-atmosphere ammonia exchange in barley mutants with reduced activities of glutamine synthetase. — Plant Physiol. 114: 1307–1312, 1997.PubMedGoogle Scholar
  12. O’Neal, D., Joy, K.D.: Glutamine synthetase of pea leaves. I. Purification, stabilisation and pH optima. — Arch. Biochem. Biophys. 159: 113–122, 1973.PubMedCrossRefGoogle Scholar
  13. Parton, W.J., Morgan, J.A., Altenhofen, J.M., Harper, L.A.: Ammonia volatilization from spring wheat plants. — Agron. J. 80: 419–425, 1988.CrossRefGoogle Scholar
  14. Schjoerring, J.K., Husted, S., Mäck, G., Mattsson, M.: The regulation of ammonium translocation in plants. — J. exp. Bot. 53: 883–890, 2002.PubMedCrossRefGoogle Scholar
  15. Schjoerring, J.K., Mattsson, M.: Quantification of ammonia exchange between agricultural cropland and the atmosphere: measurements over two complete growth cycles of oilseed rape, wheat, barley, and pea. — Plant Soil 228: 105–115, 2001.CrossRefGoogle Scholar
  16. Schjoerring, J.K., Mattsson, M., Husted, S.: Physiological parameters controlling plant-atmosphere ammonia exchange. — Atmos. Environ. 32: 491–498, 1998.CrossRefGoogle Scholar
  17. Skopelitis, D.S., Paranychianakis, N.V., Kouvarakis, A., Spyros, A., Stephanou, E.G., Roubelakis-Angelakis, K.A.: The isoenzyme 7 of tobacco NAD(H)-dependent glutamate dehydrogenase exhibits high deaminating and low aminating activities in vivo. — Plant Physiol. 145: 1726–1734, 2007.PubMedCrossRefGoogle Scholar
  18. Sommer, S.G., Schjoerring, J.K., Denmead, O.T.: Ammonia emission from mineral fertilizers and fertilized crops. — Adv. Agron. 82: 557–622, 2004.CrossRefGoogle Scholar
  19. Speer, M., Kaiser, W.M.: Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea L. and Pisum sativum L. under salinity. — Plant Physiol. 97: 990–997, 1991.PubMedCrossRefGoogle Scholar
  20. Sutton, M.A., Asman, W.A.H., Schjoerring, J.K.: Dry deposition of reduced N. — Tellus 46B: 255–273, 1994.Google Scholar
  21. Turano, F.J., Dashner, R., Upadhayaya, A., Caldwell, C.R.: Purification of mitochondrial glutamate dehydrogenase from dark-grown soybean seedlings. — Plant Physiol. 112: 1357–1364, 1996.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • W. J. Duan
    • 1
    • 2
  • T. Z. Yang
    • 1
  • Y. Dai
    • 2
  • D. L. Li
    • 2
  • X. Q. Zhang
    • 1
  • H. B. Liu
    • 1
  • N. Li
    • 2
  • C. G. Wang
    • 2
  1. 1.Henan Agricultural UniversityZhengzhouP.R.China
  2. 2.Research and Development CenterChina Tobacco Chuanyu Industrial CorporationChengduP.R. China

Personalised recommendations