Biologia Plantarum

, Volume 56, Issue 3, pp 566–570 | Cite as

Effects of 5-aminolevulinic acid on the H2O2-content and antioxidative enzyme gene expression in NaCl-treated cucumber seedlings

  • A. Zhen
  • Z. L. Bie
  • Y. Huang
  • Z. X. Liu
  • M. L. Fan
Brief Communication


The potential of 5-aminolevulenic acid (ALA) to enhance the salt tolerance of cucumber (Cucumis sativus L.) seedlings was investigated. ALA was applied at various concentrations (0, 1, 10, 25, 50, and 100 mg dm−3) as foliar spray or root watering. Then the seedlings were exposed to 0 or 75 mM NaCl for 5 d. NaCl stress reduced the root and leaf dry masses, leaf area, and the leaf net CO2 assimilation rate. These reductions were counteracted by exogenous ALA, and the most efficient was 50 mg dm−3 concentration via foliar spray. ALA decreased the H2O2 contents and increased the activities of ascorbate peroxidase (APX) and glutathione reductase (GR) in NaCl-treated cucumber roots and leaves and the activity of catalase (CAT) in leaves. The ALA application also up-regulated the expressions of CAT and cAPX genes in roots and leaves and the expression of GR gene in roots of the NaCl treated cucumber plants.

Additional key words

ascorbate peroxidase catalase Cucumis sativus gene expression glutathione reductase salinity 



5-aminolevulinic acid


ascorbate peroxidase


reduced ascorbic acid






dehydroascorbate reductase


glutathione reductase


reduced glutathione


oxidized glutathione


monodehydroascorbate reductase


plant growth regulators


net photosynthetic rate


reactive oxygen species


superoxide dismutase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghaleh, M., Niknam, V., Ebrahimzadeh, H., Razavi, K.: Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. — Biol. Plant. 53: 243–248, 2009.CrossRefGoogle Scholar
  2. Asada, K.: Production and scavenging of reactive oxygen species in chloroplasts and their functions. — J. Plant Physiol. 141: 391–396, 2006.CrossRefGoogle Scholar
  3. Ashraf, M.: Biotechnological approach of improving plant salt tolerance using antioxidants as markers. — Biotechnol. Adv. 27: 84–93, 2009.PubMedCrossRefGoogle Scholar
  4. Attia, H., Arnaud, N., Karray, N., Lachaâl, M.: Long-term effects of mild salt stress on growth, ion accumulation and superoxide dismutase expression on Arabidopsis rosette leaves. — Physiol. Plant. 132: 293–305, 2008.PubMedCrossRefGoogle Scholar
  5. Brennan, T., Frenkel, C.: Involvement of hydrogen peroxide in the regulation of senescence in pear. — Plant Physiol. 59: 411–416, 1977.PubMedCrossRefGoogle Scholar
  6. Castillo, F.J., Greppin, H.: Extracellular ascorbic acid and enzyme activities related to ascorbic acid metabolism in Sedum album L. leaves after ozone exposure. — Environ. exp. Bot. 28: 232–233, 1988.CrossRefGoogle Scholar
  7. Chen, J.X., Wang, X.F.: [Experimental Instruction of Plant Physiology.] Pp. 12–127. South China University of Thechnology Press, Guangzhou 2002 [in Chinese].Google Scholar
  8. Dhindsa, R.S., Plumb-Dhindsa, P., Thorpe, T.A.: Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. — J. exp. Bot. 32: 93–101, 1981.CrossRefGoogle Scholar
  9. Foyer, C.H., Halliwell, B.: Presence of glutathione and glutathione reductase in chloroplast: a proposed role on ascorbic acid metabolism. — Planta 133: 21–25, 1976.CrossRefGoogle Scholar
  10. He, Y., Zhu, Z.J., Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. — Biol. Plant. 52: 792–795, 2008.CrossRefGoogle Scholar
  11. Hernandez, M., Fernandez-Garcia, N., Diaz-Vivancos, P., Olmos, E.: A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. — J. exp. Bot. 61: 521–535, 2010.PubMedCrossRefGoogle Scholar
  12. Hoagland, D.R., Arnon, D.S.: The water culture method for growing plants without soil. — Calif. Agr. Exp. Sta. Circular 347: 1–32, 1950.Google Scholar
  13. Hossain, M.A., Nakano, Y., Asada, K.: Monodeydroascorbate reductase in spinach chloroplast and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. — Plant Cell Physiol. 25: 385–395, 1984.Google Scholar
  14. Huang, Y., Tang, R., Cao, Q.L., Bie, Z.L.: Improving the fruit yield and quality of cucumber by grafting onto the salt tolerant rootstock under NaCl stress. — Sci. Hort. 122: 26–31, 2009.CrossRefGoogle Scholar
  15. Kang, G.., Wang, C., Sun, G., Wang, Z.: Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. — Environ. exp. Bot. 50: 9–15, 2003.CrossRefGoogle Scholar
  16. Kholová, J., Sairam, R.K., Meena, R.C., Srivastava, G.C.: Response of maize genotypes to salinity stress in relation to osmolytes and metal-ion contents, oxidative stress and antioxidant enzymes activity. — Biol. Plant. 53: 249–256, 2009.CrossRefGoogle Scholar
  17. Kim, S.Y., Lim, J.-H., Park, M.R., Kim, Y.J., Park, T.H., Sco, Y.W., Choi, K.G., Yun, S.J.: Enhanced antioxidant enzymes are associated with reduced hydrogen peroxide in barley roots under saline stress. — J. Biochem. mol. Biol. 38: 218–224, 2005.PubMedCrossRefGoogle Scholar
  18. Korkmaz, A., Korkmaz, Y., Demirkıran, A.R.: Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. — Environ. exp. Bot. 67: 495–501, 2010.CrossRefGoogle Scholar
  19. Liu, Y.J.: Experiment Technology of Plant Biochemistry and Physiology. Pp. 146–147. Agriculture of China Press, Beijing 2000.Google Scholar
  20. Mallik, S., Nayak, M., Sahu, A.K., Shaw B.P.: Response of antioxidant enzymes to high NaCl concentration in different salt-tolerant plants. — Biol. Plant. 55: 191–195, 2011.CrossRefGoogle Scholar
  21. Mandhania, S., Madan, S., Sawhney, V.: Antioxidant defense mechanism under salt stress in wheat seedlings. — Biol. Plant. 50: 227–231, 2006.CrossRefGoogle Scholar
  22. Meloni, D.A., Oliva, M.A., Martinez, C.A., Cambraia, J.: Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. — Environ. exp. Bot. 49: 69–76, 2003.CrossRefGoogle Scholar
  23. Memon, S.A., Hou, X., Wang, L., Li, Y.: Promotive effect of 5-aminolevulinic acid on chlorophyll, antioxidative enzymes and photosynthesis of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee). — Acta Physiol. Plant. 31: 51–57, 2009.CrossRefGoogle Scholar
  24. Mulholland, B.J., Taylor, I.B., Jackson, A.C., Thompson, A.J.: Can ABA mediate responses of salinity stressed tomato. — Environ. exp. Bot. 50: 17–28, 2003.CrossRefGoogle Scholar
  25. Naeem, M.S., Jin, Z.L., Wan, G.L., Liu, D., Liu, H.B., Yoneyama, K., Zhou, W.J.: 5-Aminolevulinic acid improves photosynthetic gas exchange capacity and ion uptake under salinity stress in oilseed rape (Brassica napus L.). — Plant Soil 332: 405–415, 2010.CrossRefGoogle Scholar
  26. Nakano, Y., Asada, K.: Hydrogen peroxide scanvenged by ascorbate-specific peroxidase in spinach chloroplast. — Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  27. Nishihara, E., Kondo, K., Parvez, M.M., Takahashi, K., Watanabe, K., Tanaka, K.: Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). — J. Plant Physiol. 160: 1085–1091, 2003.PubMedCrossRefGoogle Scholar
  28. Shaw, B.P., Sahu, S.K., Mishra, R.K.: Heavy metal induced oxidative damage in terrestrial plants. — In: Prasad, M.N.V. (ed.): Heavy Metals Stress in Plants: from Biomolecules to Ecosystems. Pp. 84–145. Springer-Verlag, Heidelberg 2004.Google Scholar
  29. Stępień, P., KŁobus, G.: Water relations and photosynthesis in Cucumis sativus L. leaves under salt stress. — Biol. Plant. 50: 610–616, 2006.CrossRefGoogle Scholar
  30. Wang, J.J., Jiang, W.B., Liu, H., Liu, W.Q., Kang, L., Hou, X.L.: Promotion by 5-aminolevulinic acid of germination of pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee) seeds under salt stress. — J. Integ. Plant Biol. 47: 1084–1091, 2005.CrossRefGoogle Scholar
  31. Wang, L.J., Jiang, W.B., Zhang, Z., Yao, Q.H., Matsui, H., Ohara, H.: 5-Aminolevinilic acid and its potential application in agriculture. — Plant Physiol. Commun. 39: 185–192, 2003.Google Scholar
  32. Warren, G.J.: Responses to low temperature and adaptation to freezing. — In: Malcolm, J.H., Peter, B. (ed.): Molecular Analysis of Plant Adaptation to the Environment. Pp. 209–247. Kluwer Academic Publishers, Dordrecht 2001.Google Scholar
  33. Watanabe, K., Nishihara, E., Watanabe, S., Tanaka, T., Takahashi, K., Takeuchi, Y.: Enhancement of growth and fruit maturity in 2-year-old grapevines cv. Delaware by 5-aminolevulinic acid. — Plant Growth Regul. 49: 35–42, 2006.CrossRefGoogle Scholar
  34. Zhang, Z.J., Li, H.Z., Zhou, W.J., Takeuchi, Y., Yoneyama, K.: Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. — Plant Growth Regul. 49: 27–34, 2006.Google Scholar
  35. Zhu, J., Bie, Z.L., Li, Y.N.: Physiological and growth responses of two different salt-sensitive cucumber cultivars to NaCl stress. — Soil Sci. Plant Nutr. 54: 400–407, 2008.CrossRefGoogle Scholar
  36. Zuccarini, P.: Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. — Biol. Plant. 52: 157–160, 2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. Zhen
    • 1
  • Z. L. Bie
    • 1
  • Y. Huang
    • 1
  • Z. X. Liu
    • 1
  • M. L. Fan
    • 1
  1. 1.College of Horticulture and ForestryHuazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of EducationWuhanP.R. China

Personalised recommendations