Biologia Plantarum

, Volume 56, Issue 4, pp 635–640 | Cite as

Modified alternative oxidase expression results in different reactive oxygen species contents in Arabidopsis cell culture but not in whole plants

  • V. I. Tarasenko
  • E. Y. Garnik
  • V. N. Shmakov
  • Y. M. Konstantinov


Alternative oxidase (AOX) transfers electrons from ubiquinone to oxygen in the respiratory chain of plant mitochondria. It is widely accepted that AOX functions as a mechanism decreasing the formation of reactive oxygen species (ROS) produced during respiratory electron transport. However, there are no experimental data to provide unambiguous proof of this hypothesis. We have studied growth characteristics, ROS content, and stress sensitivity in Arabidopsis transgenic lines with reduced or increased levels of AOX. We demonstrated that AOX-deficient plants grown in soil had an extended reproductive phase. Changes in AOX activity did not affect ROS content or stress sensitivity in the whole plants. However in the suspension culture, cells overexpressing AOX had significantly lower ROS content, whereas the AOX-deficient cells had higher ROS contents compared to the wild-type (WT) cells. Prooxidant treatment led to the increase in ROS content and to the reduction of viability more in the cells overexpressing AOX than in WT and AOX-deficient cells. Thus, we demonstrated that differences in the metabolism of whole plants and cultured cells might affect AOX functioning.

Additional key words

antimycin A hydrogen peroxide menadione oxidative stress superoxide suspension culture 



alternative oxidase




2′,7′-dichlorofluorescein diacetate


electron transport chain


nitroblue tetrazolium


reactive oxygen species




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amirsadeghi, S., Robson, C.A., McDonald, A.E., Vanlerberghe, G.C.: Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules. — Plant Cell Physiol. 47: 1509–1519, 2006.PubMedCrossRefGoogle Scholar
  2. Baker, C.J., Mock, N.M.: An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. — Plant Cell Tissue Organ Cult. 39: 7–12, 1994.CrossRefGoogle Scholar
  3. Boyes, D.C., Zayed, A.M., Ascenzi, R., McCaskill, A.J., Hoffman, N.E., Davies, K.R., Gorlach, J.: Growth stagebased phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. — Plant Cell 13: 1499–1510, 2001.PubMedGoogle Scholar
  4. Clifton, R., Lister, R., Parker, K.L., Sappl, P.G., Elhafez, D., Millar, A.H., Day, D.A., Whelan, J.: Stress-induced coexpression of alternative respiratory chain components in Arabidopsis thaliana. — Plant mol. Biol. 58: 193–212, 2005.PubMedCrossRefGoogle Scholar
  5. Clifton, R., Millar, A.H., Whelan, J.: Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. — Biochim. biophys Acta 1757: 730–741, 2006.PubMedCrossRefGoogle Scholar
  6. Doyle, J.J., Doyle, J.L.: A rapid isolation program for small quantities of fresh leaf tissue. — Phytochem. Bull. 19: 11–15, 1987.Google Scholar
  7. Ferreira, A.L., Arrabaca, J.D., Vaz-Pinto, V., Lima-Costa, M.E.: Induction of alternative oxidase chain under salt stress conditions. — Biol. Plant. 52: 66–71, 2008.CrossRefGoogle Scholar
  8. Fiorani, F., Umbach, A.L., Siedow, J.N.: The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature: a study of Arabidopsis AOX1a transgenic plants. — Plant Physiol. 139: 1795–1805, 2005.PubMedCrossRefGoogle Scholar
  9. Garnik, E.Y., Tarasenko, V.I., Kobzev, V.F., Konstantinov, Y.M.: Differential expression of maize mitochondrial genes as dependent on mitochondria redox state. — Russ. J. Plant Physiol. 53: 463–468, 2006.CrossRefGoogle Scholar
  10. Gilliland, A., Singh, D.P., Hayward, J.M., Moore, C.A., Murphy, A.M., York, C.J., Slator, J., Carr, J.P.: Genetic modification of alternative respiration has differential effects on antimycin A-induced versus salicylic acidinduced resistance to tobacco mosaic virus. — Plant Physiol. 132: 1518–1528, 2003.PubMedCrossRefGoogle Scholar
  11. Giraud, E., Ho, L.H.M., Clifton, R., Carroll, A., Estavillo, G., Tan, Y.F., Howell, K.A., Ivanova, A., Pogson, B.J., Millar, A.H., Whelan, J.: The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. — Plant Physiol. 147: 595–610, 2008.PubMedCrossRefGoogle Scholar
  12. Hu, W.H., Xiao, Y.A., Zeng, J.J., Hu, X.H.: Photosynthesis, respiration and antioxidant enzymes in pepper leaves under drought and heat stresses. — Biol. Plant. 54: 761–765, 2010.CrossRefGoogle Scholar
  13. Karpova, O.V., Kuzmin, E.V., Elthon, T.E., Newton, K.J.: Differential expression of alternative oxidase genes in maize mitochondrial mutants. — Plant Cell 14: 3271–3284, 2002.PubMedCrossRefGoogle Scholar
  14. Lee, B.H., Lee, H., Xiong, L., Zhu, J.K.: A mitochondrial complex I defect impairs cold-regulated nuclear gene expression. — Plant Cell. 14: 1235–1251, 2002.PubMedCrossRefGoogle Scholar
  15. Maxwell, D.P., Wang, Y., McIntosh, L.: The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. — Proc. nat. Acad. Sci. USA. 96: 8271–8276, 1999.PubMedCrossRefGoogle Scholar
  16. Meyer, E.H., Tomaz, T., Carroll, A.J., Estavillo, G., Delannoy, E., Tanz, S.K., Small, I.D., Pogson, B.J., Millar, A.H.: Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night. — Plant Physiol. 151: 603–619, 2009.PubMedCrossRefGoogle Scholar
  17. Myouga, F., Hosoda, C., Umezawa, T., Iizumi, H., Kuromori, T., Motohashi, R., Shono, Y., Nagata, N., Ikeuchi, M., Shinozaki, K.: A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. — Plant Cell 20: 3148–3162, 2008.PubMedCrossRefGoogle Scholar
  18. Moller, I.M.: Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. — Annu. Rev. Plant Physiol. Plant mol. Biol. 52: 561–591, 2001.PubMedCrossRefGoogle Scholar
  19. Noctor, G., Dutilleul, C., De Paepe, R., Foyer, C.H.: Use of mitochondrial electron transport mutants to evaluate the effects of redox state on photosynthesis, stress tolerance and the integration of carbon/nitrogen metabolism. — J. exp. Bot. 55: 49–57, 2004.PubMedCrossRefGoogle Scholar
  20. Pasqualini, S., Paolocci, F., Borgogni, A., Morettini, R., Ederli, L.: The overexpression of an alternative oxidase gene triggers ozone sensitivity in tobacco plants. — Plant Cell Environ. 30: 1545–1556, 2007.PubMedCrossRefGoogle Scholar
  21. Ramel, F., Sulmon, C., Bogard, M., Coue, I., Gouesbet, G.: Differential dynamics of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. — BMC Plant Biol. 9: 28, 2009.PubMedCrossRefGoogle Scholar
  22. Robson, C.A., Vanlerberghe, G.C.: Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and -independent pathways of programmed cell death. — Plant Physiol. 129: 1908–1920, 2002.PubMedCrossRefGoogle Scholar
  23. Strodtkotter, I., Padmasree, K., Dinakar, C., Speth, B., Niazi, P.S., Wojtera, J., Voss, I., Do, P.T., Nunes-Nesi, A., Fernie, A.R., Linke, V., Raghavendra, A.S., Scheibe, R.: Induction of the AOX1D isoform of alternative oxidase in A. thaliana T-DNA insertion lines lacking isoform AOX1A is insufficient to optimize photosynthesis when treated with antimycin A. — Mol. Plants 2: 284–297, 2009.CrossRefGoogle Scholar
  24. Tarasenko, V.I., Garnik, E.Y., Konstantinov, Y.M.: Characterization of Arabidopsis mutant with inactivated gene coding for Fe-S subunit of mitochondrial respiratory chain complex I. — Russ. J. Plant Physiol. 57: 392–400, 2010.CrossRefGoogle Scholar
  25. Tarasenko, V.I., Garnik, E.Y., Shmakov, V.N., Konstantinov, Y.M.: Induction of Arabidopsis gdh2 gene expression during changes in redox state of the mitochondrial respiratory chain. — Biochemistry (Moscow) 74: 47–53, 2009.CrossRefGoogle Scholar
  26. Umbach, A.L., Fiorani, F., Siedow, J.N.: Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. — Plant Physiol. 139: 1806–1820, 2005.PubMedCrossRefGoogle Scholar
  27. Vanlerberghe, G.C., Cvetkovska, M., Wang, J.: Is the maintenance of homeostatic mitochondrial signaling during stress a physiological role for alternative oxidase. — Physiol. Plant. 137: 392–406, 2009.PubMedCrossRefGoogle Scholar
  28. Vanlerberghe, G.C., McIntosh, L.: Alternative oxidase: from gene to function. — Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 703–734, 1997.PubMedCrossRefGoogle Scholar
  29. Vanlerberghe, G.C., Robson, C.A., Yip, J.Y.H.: Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome pathway prevents programmed cell death. — Plant Physiol. 129: 1829–1842, 2002.PubMedCrossRefGoogle Scholar
  30. Vanlerberghe, G.C., Vanlerberghe, A.E., McIntosh, L.: Molecular genetic alteration of plant respiration: silencing and overexpression of alternative oxidase in transgenic tobacco. — Plant Physiol. 106: 1503–1510, 1994.PubMedGoogle Scholar
  31. Watanabe, C.K., Hachiya, T., Terashima, I., Noguchi, K.: The lack of alternative oxidase at low temperature leads to a disruption of the balance in carbon and nitrogen metabolism, and to an up-regulation of antioxidant defense systems in Arabidopsis thaliana leaves. — Plant Cell Environ. 31: 1190–1202, 2008.PubMedCrossRefGoogle Scholar
  32. Yoshida, K., Terashima, I., Noguchi, K.: Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light. — Plant Cell Physiol. 48: 606–614, 2007.PubMedCrossRefGoogle Scholar
  33. Yoshida, K., Watanabe, C., Kato, Y., Sakamoto, W., Noguchi, K.: Influence of chloroplastic photo-oxidative stress on mitochondrial alternative oxidase capacity and respiratory properties: a case study with Arabidopsis yellow variegated 2. — Plant Cell Physiol. 49: 592–603, 2008.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • V. I. Tarasenko
    • 1
  • E. Y. Garnik
    • 1
  • V. N. Shmakov
    • 1
  • Y. M. Konstantinov
    • 1
  1. 1.Siberian Institute of Plant Physiology and BiochemistrySiberian Division of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations