Biologia Plantarum

, Volume 56, Issue 2, pp 395–400 | Cite as

Genetic variability in regenerated plants of Ungernia victoris

  • O. M. Bublyk
  • I. O. Andreev
  • K. V. Spiridonova
  • V. A. Kunakh
Brief Communication


To determine the suitability of micropropagation techniques developed for conserving rare medicinal herb Ungernia victoris we estimated the genetic fidelity of plants produced through direct regeneration from the bulb scale segments and organogenesis from long-term callus culture. Average value of the Jaccard’s distances between explant-derived regenerants and maternal plants calculated from RAPD data was 0.5 %, while that of estimated between callus-derived regenerants and maternal cell line was 4.2 %; average distances between the objects among the explant-derived and callus-derived regenerants were 0.7 % and 2.5 %, respectively. The data obtained suggest that conditions for in vitro culture applied in this work provide relatively high genetic stability of the species upon the direct regeneration in vitro and regeneration from the long-term cultured callus.

Additional key words

micropropagation RAPD-analysis somaclonal variation tissue culture 



1-naphtalene acetic acid


polymerase chain reaction


random amplified polymorphic DNA


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors would like to thank Volodymyr Adonin for the technical help in English manuscript preparation.


  1. Al-Zahim, M.A., Ford-Lloyd, B.V., Newbury, H.J.: Detection of somaclonal variation in garlic (Allium sativum L.) using RAPD and cytological analysis. — Plant Cell Rep. 18: 473–477, 1999.CrossRefGoogle Scholar
  2. Arnholdt-Schmitt, B.: Genomic instabilities in tissue culture — a physiological normality? — In: Bender, L., Kumar, A. (ed.): From Soil to Cell — a Broad Approach to Plant Life. 12. Giessener Elektronische Bibliothek, Giessen 2001.Google Scholar
  3. Bohanec, B., Jakse, M., Ihan, A., Jovorik, B.: Studies in gynogenesis in onion (Allium cepa L.) — induction procedures and genetic analysis of regenerants. — Plant Sci. 104: 215–224, 1995.CrossRefGoogle Scholar
  4. Bublyk, O.M., Andreev, I.O., Spiridonova, E.V., Kunakh, V.A.: [Somaclonal variability of U. victoris: the necessity for comprehensive genetic analysis.] — Biopolym. Cell 24: 487–493, 2008. [In Ukr.]Google Scholar
  5. Bublyk, O.M., Andreev, I.O., Spiridonova, E.V., Kunakh, V.A.: [Variability of Ungernia victoris morphogenic and nonmorphogenic tissue culture as results from RAPD-analysis.] — Bull. Vavilov Soc. Genet. Breed. Ukraine 6: 44–51, 2008. [In Ukr.]Google Scholar
  6. De la Puente, R., González, A.I., Ruiz, M.L., Polanco, C.: Somaclonal variation in rye (Secale cereale L.) analyzed using polymorphic and sequenced AFLP markers. — In Vitro cell. dev. Biol. Plant. 44: 419–426, 2008.CrossRefGoogle Scholar
  7. Draper, J., Scott, R., Armitage, P., Walden, R.: Plant Genetic Transformation and Gene Expression. A Laboratory Manual. — Blackwell Scientific Publications, Oxford 1988.Google Scholar
  8. Gostimsky, S.A., Kokaeva, Z.G., Konovalov, F.A.: Studying plant genome variation using molecular markers. — Russ. J. Genet. 41: 378–388, 2005.CrossRefGoogle Scholar
  9. Guo, W.L., Gong, L., Ding, Z.F., Li, Y.D., Li, F.X., Zhao, S.P., Liu, B.: Genomic instability in phenotypically normal regenerants of medicinal plant Codonopsis lanceolata Benth. et Hook. f., as revealed by ISSR and RAPD markers. — Plant Cell Rep. 25: 896–906, 2006.PubMedCrossRefGoogle Scholar
  10. Gupta, P.K., Varshney, R.K.: Molecular markers for genetic fidelity during micropropagation and conservation. — Curr. Sci. 76:1308–1310, 1999.Google Scholar
  11. Gupta, P.K.: Chromosomal basis of somaclonal variation in plants. — In: Jain, S.M., Brar, D.S., Alhoowalia, B.S. (ed.): Somaclonal Variation and Induced Mutations in Crop Improvement. Pp. 149–168. Kluwer Academic Publishers, Dordrecht — Boston — London 1998.Google Scholar
  12. Huang, W.J., Ning, G.G., Liu, G.F., Bao, M.Z.: Determination of genetic stability of long-term micropropagated plantlets of Platanus acerifolia using ISSR markers. — Biol. Plant. 53: 159–163, 2009.CrossRefGoogle Scholar
  13. Khamidkhodzhaev, S.A.: Lekarstvennye Rasteniya Roda Ungernia v Sredney Azii. [Medicinal Plants of the Ungernia Genus in Central Asia]. — FAN, Tashkent 1982. [In Russ.]Google Scholar
  14. Kozyrenko, M.M., Artyukova, E.V., Boltenkov, E.V., Lauve, L.S.: [Somaclonal variability of Iris pseudacorus L. judged by RAPD- and cytogenetic analyses.] — Russ. J. Biotechnol. 2: 13–23, 2004. [In Russ.]Google Scholar
  15. Kunakh, V.A.: Biotekhnologiya Likars’kykh Roslyn. Genetychni ta Fiziologo-Biokhimichni Osnovy [Biotechnology of medical plants. Genetic, physiological and biochemical basis] — Logos, Kyiv 2005. [In Ukr.]Google Scholar
  16. Kunakh, V.A., Mozhylevska, L.P., Bublyk, O.M., Kolonina, I.V., Muzyka, V.I.: [Microclonal propagation of Ungernia victoris Vved. ex Artjuschenko.] — Biotechnology (Kiev) 1: 57–63, 2008. [In Ukr.]Google Scholar
  17. Kunakh, V.A., Mozhylevska, L.P., Potapchuk, O.A., Muzyka, V.I., Kolonina, I.V.: [Obtaining of the Ungernia victoris tissue culture and its peculiarities upon growing in the nutrient media of different composition.] — Russ. J. Biotechnol. 1: 14–21, 2007. [In Russ.]Google Scholar
  18. Kushnir, G.P., Sarnats’ka, V.V.: Mikroklonal’ne Rozmnozhennya Roslyn. [Microclonal Propagation of Plants.] — Naukova Dumka, Kyiv 2005. [In Ukr.]Google Scholar
  19. Kuznetsova, O.I., Ash, O.A., Gostimsky, S.A.: [The effect of the duration of callus culture on the accumulation of genetic alterations in pea Pisum sativum L.] — Russ. J. Genet. 42: 555–562, 2006. [In Russ.]CrossRefGoogle Scholar
  20. Limanton-Grevet, A., Sotta, B., Brown, S., Jullien, M.: Analysis of habituated embryogenic lines in Asparagus officinalis L.: growth characteristics, hormone content and ploidy level of calli and regenerated plants. — Plant Sci. 160: 15–26, 2000.PubMedCrossRefGoogle Scholar
  21. Linacero, R., Freitas Alves, E., Vazques, A.M.: Hot spots of DNA instability revealed through the study of somaclonal variation in rye. — Theor. appl. Genet. 100: 506–511, 2000.CrossRefGoogle Scholar
  22. Mo, X.Y., Long, T., Liu, Z., Lin, H., Liu, X.Z., Yang, Y.M., Zhang, H.Y.: AFLP analysis of somaclonal variations in Eucalyptus globulus. — Biol. Plant. 53: 741–744, 2009.CrossRefGoogle Scholar
  23. Osipova, E.S., Kokaeva, Z.G., Troitskij, A.V., Dolgikh, Yu.I., Shamina, Z.B., Gostimskij, S.A.: [RAPD analysis of maize somaclones.] — Russ. J. Genet. 37: 80–84, 2001. [In Russ.]CrossRefGoogle Scholar
  24. Osipova, E.S., Koveza, O.V., Troitskij, A.V., Dolgikh, Yu.I., Shamina, Z.B., Gostimskij, S.A.: [Analysis of specific RAPD and ISSR fragments in maize (Zea mays L.) somaclones and development of SCAR markers on their basis.] — Russ. J. Genet. 39: 1412–1419, 2003. [In Russ.]CrossRefGoogle Scholar
  25. Polanco, C., Ruiz, M.L.: AFLP analysis of somaclonal variation in Arabidopsis thaliana regenerated plants. — Plant Sci. 162: 817–824, 2002.CrossRefGoogle Scholar
  26. Rani, V., Raina, S.N.: Genetic fidelity of organized meristemderived micropropagated plants: a critical reappraisal. — In Vitro cell. dev. Biol. Plant. 36: 319–330, 2000.CrossRefGoogle Scholar
  27. Rout, G.R., Samantaray, S., Das, P.: In vitro manipulation and propagation of medicinal plants. — Biotechnol. Adv. 18: 91–120, 2000.PubMedCrossRefGoogle Scholar
  28. Schluter, P.M., Harris, S.A.: Analysis of multilocus fingerprinting data sets containing missing data. — Mol. Ecol. Notes. 6: 569–572, 2006.CrossRefGoogle Scholar
  29. Smykal, P., Valledor, L., Rodriguez, R., Griga, M.: Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.). — Plant Cell Rep. 26: 1985–1998, 2007.PubMedCrossRefGoogle Scholar
  30. Soniya, E.V., Banerjee, N.S., Das, M.R.: Genetic analysis of somaclonal variation among callus-derived plants of tomato. — Curr. Sci. 80: 1213–1215, 2001.Google Scholar
  31. Tyagi, P., Khanduja, S., Kothari, S.L.: In vitro culture of Capparis decidua and assessment of clonal fidelity of the regenerated plants. — Biol. Plant. 54: 126–130, 2010.CrossRefGoogle Scholar
  32. Varshney, A., Lakshmikumaran, M., Srivastava, P.S., Dhawan, V.: Establishment of genetic fidelity of in vitro-raised Lilium bulblets through RAPD markers. — In Vitro cell. dev. Biol. Plant. 37: 227–231, 2001.CrossRefGoogle Scholar
  33. Vollosovich, A.G., Puchinina, G.M., Nikolaeva, L.A.: [Optimization of macrosalt composition for tissue culture of Rauwolfia serpentina Benth.] — Rast. Resursy 15: 516–526, 1979. [In Russ]Google Scholar
  34. Wilhelm, E., Hristoforoglu, K., Fluch, S., Burg, K.: Detection of microsatellite instability during somatic embryogenesis of oak (Quercus robur L.). — Plant Cell Rep. 23: 790–795, 2005.PubMedCrossRefGoogle Scholar
  35. Xing, Y., Yu, Y., Luo, X., Zhang, J.-N., Zhao, B., Guo, Y.-D.: High efficiency organogenesis and analysis of genetic stability of the regenerants in Solanum melongena. — Biol. Plant. 54: 231–236, 2010.CrossRefGoogle Scholar
  36. Yuan, X.F., Dai, Z.H., Wang, X.D., Zhao, B.: Assessment of genetic stability in tissue-cultured products and seedlings of Saussurea involucrata by RAPD and ISSR markers. — Biotechnol. Lett. 31: 1279–1287, 2009.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • O. M. Bublyk
    • 1
  • I. O. Andreev
    • 1
  • K. V. Spiridonova
    • 1
  • V. A. Kunakh
    • 1
  1. 1.Institute of Molecular Biology and GeneticsNAS of UkraineKyivUkraine

Personalised recommendations