Biologia Plantarum

, Volume 56, Issue 2, pp 365–368 | Cite as

Multiple effects of inhibition of mitochondrial alternative oxidase pathway on photosynthetic apparatus in Rumex K-1 leaves

  • L.T. Zhang
  • H.Y. Gao
  • Z.S. Zhang
  • Z.C. Xue
  • Q.W. Meng
Brief Communication


The effects of inhibition of mitochondrial alternative oxidase (AOX) respiratory pathway on photosynthetic apparatus in Rumex K-1 leaves were studied. Under high irradiance, the inhibition of AOX pathway caused over-reduction of photosystem (PS) 2 acceptor side, a decrease in the energy transfer in the PS 2 units, damage of donor side of PS 2 and decrease in pool size of electron acceptors. The inhibition of AOX pathway also decreased photosynthetic performance index (PIABS), actual photochemical efficiency (ΦPS2), photochemical quenching (qP) and photosynthetic O2 evolution rate. The results demonstrate that mitochondrial AOX pathway plays a vital role in photoprotection of photosynthetic apparatus.

Additional key words

chlorophyll a fluorescence high irradiance JIP-test photosystem 2 



alternative oxidase


cytochrome oxidase




primary quinone electron acceptor of PS 2


reactive oxygen species


salicylhydroxamic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We are grateful to the State Key Basic Research and Development Plan of China (2009CB118500) and China National Nature Science Foundation (No. 30671451; No. 30571125) for their financial support of this study.


  1. Asada, K.: The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 601–639, 1999.PubMedCrossRefGoogle Scholar
  2. Asada, K.: The water-water cycle as alternative photon and electron sinks. — Phil. Trans. roy. Soc. London B 355: 1419–1430, 2000.PubMedCrossRefGoogle Scholar
  3. Chen, H.X., Li, P.M., Gao, H.Y.: Alleviation of photoinhibition by calcium supplement in salt-treated Rumex leaves. — Physiol. Plant. 129: 386–396, 2007.CrossRefGoogle Scholar
  4. Hu, W.H., Xiao, Y.A., Zeng, J.J., Hu, X.H.: Photosynthesis, respiration and antioxidant enzymes in pepper leaves under drought and heat stresses. — Biol. Plant. 54: 761–765, 2010.CrossRefGoogle Scholar
  5. Jia, Y.J., Cheng, D.D., Wang, W.B., Gao, H.Y., Liu, A.X., Li, X.M., Meng, Q.W.: Different enhancement of senescence induced by metabolic products of Alternaria alternata in tobacco leaves of different ages. — Physiol. Plant. 138: 164–175, 2010.PubMedCrossRefGoogle Scholar
  6. Johnson, G.N.: Cyclic electron transport in C3 plants: fact or artifact? — J. exp. Bot. 56: 407–411, 2005.PubMedCrossRefGoogle Scholar
  7. Li, P.M., Cheng, L.L., Gao, H.Y., Jiang, C.D., Peng, T.: Heterogeneous behavior of PSII in soybean (Glycine max) leaves with identical PSII photochemistry efficiency under different high temperature treatments. — J. Plant Physiol. 166: 1607–1615, 2009.PubMedCrossRefGoogle Scholar
  8. Müller, P., Li, X.P., Niyogi, K.K.: Non-photochemical quenching. A response to excess light energy. — Plant Physiol. 125: 1558–1566, 2001.PubMedCrossRefGoogle Scholar
  9. Niyogi, K.K.: Photoprotection revisited: genetic and molecular approaches. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 333–359, 1999.PubMedCrossRefGoogle Scholar
  10. Osmond, B., Badger, M., Maxwell, K., Björkman, O., Leegood, R.C.: Too many photons: photorespiration, photoinhibition and photooxidation. — Trends Plant Sci. 2: 119–121, 1997.CrossRefGoogle Scholar
  11. Raghavendra, A.S., Padmasree, K.: Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. — Trends Plant Sci. 8: 546–553, 2003.PubMedCrossRefGoogle Scholar
  12. Rumeau, D., Peltier, G., Cournac, L.: Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. — Plant Cell Environ. 30: 1041–1051, 2007.PubMedCrossRefGoogle Scholar
  13. Singh-Rawal, P., Jajoo, A., Bharti, S.: Fluoride affects distribution of absorbed excitation energy more in favour of photosystem 1. — Biol. Plant. 54: 556–560, 2010.CrossRefGoogle Scholar
  14. Strasser, B.J., Strasser, R.J.: Measuring fast fluorescence transients to address environmental questions: the JIP test. — In: Mathis, P. (ed.): Photosynthesis: from Light to Biosphere. Pp. 977–980. Kluwer Academic Press, Dordrecht — Boston — London 1995.Google Scholar
  15. Strasser, R.J., Srivastava, A., Tsimilli-Michael, M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. — In: Yunus, M., Pathre, U., Mohanty, P. (ed.): Probing Photosynthesis: Mechanism, Regulation and Adaptation. Pp. 445–483. Taylor and Francis, London — New York 2000.Google Scholar
  16. Strasser, R.J., Tsimill-Michael, M., Srivastava, A.: Analysis of the chlorophyll a fluorescence transient. — In: Papageorgiou, G.C., Govindjee (ed.): Chlorophyll A Fluorescence: a Signature of Photosynthesis. Pp. 321–362. Springer, Dordrecht 2004.Google Scholar
  17. Yoshida, K., Terashima, I., Noguchi, K.: Distinct roles of the cytochrome pathway and alternative oxidase in leaf photosynthesis. — Plant Cell Physiol. 47: 22–31, 2006.PubMedCrossRefGoogle Scholar
  18. Yoshida, K., Terashima, I., Noguchi, K.: Up-regulation of mitochondrial alternative oxidase concomitant with chloroplast over-reduction by excess light. — Plant Cell Physiol. 48: 606–614, 2007.PubMedCrossRefGoogle Scholar
  19. Yusuf, M.A., Kumar, D., Rajwanshi, R., Strasser, R.J., Tsimilli-Michael, M., Govindjee, Sarin, N.B.: Overexpression of Γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. — Biochim. biophys. Acta 1797: 1428–1438, 2010.PubMedCrossRefGoogle Scholar
  20. Zhang, L.L., Wen, D.Z., Fu, S.L.: Responses of photosynthetic parameters of Mikania micrantha and Chromolaena odorata to contrasting irradiance and soil moisture. — Biol. Plant. 53: 517–522, 2009.CrossRefGoogle Scholar
  21. Zhang, Y.H., Chen, L.J., He, J.L., Qian, L.S., Wu, L.Q., Wang, R.F.: Characteristics of chlorophyll fluorescence and antioxidative system in super-hybrid rice and its parental cultivars under chilling stress. — Biol. Plant. 54: 164–168, 2010.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • L.T. Zhang
    • 1
  • H.Y. Gao
    • 1
  • Z.S. Zhang
    • 1
  • Z.C. Xue
    • 1
  • Q.W. Meng
    • 1
  1. 1.State Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai’anP.R. China

Personalised recommendations