Advertisement

Biologia Plantarum

, Volume 56, Issue 1, pp 135–139 | Cite as

Transformation with a gene for myo-inositol O-methyltransferase enhances the cold tolerance of Arabidopsis thaliana

  • B. Zhu
  • R. -H. Peng
  • A. -S. Xiong
  • J. Xu
  • X. -Y. Fu
  • W. Zhao
  • X. -F. Jin
  • X. -R. Meng
  • J. -J. Gao
  • R. Cai
  • Q. -H. Yao
Brief Communication

Abstract

In this study, we report a function of myo-inositol-O-methyltransferase (Imt1) in response to low temperature stress using transgenic Arabidopsis thaliana. Imt1 gene was constructed identical to the Imt1 gene from a halophyte Mesembryanthemum crystallinum. After cold stress, the Imt1 transgenic plants exhibited stronger growth than the wild type plants. The elevated cold tolerance of the Imt1 over-expressing plants was confirmed by the lower electrolyte leakage and accumulation of malondialdehyde, but higher proline and soluble sugar contents in transgenic than wild type plants.

Additional key words

electrolyte leakage malondialdehyde proline soluble sugars 

Abbreviations

Imt1

myo-inositol O-methyltransferase

MDA

malondialdehyde

nt

nucleotide

OE-PCR

overlap extension polymerase chain reaction

PTDS

PCR-based two-step DNA synthesis

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The research was supported by 863 Program No. 2006AA10Z117 and Shanghai Basic Research Project No. 08JC1418000.

References

  1. Alferez, F., Pozo, L., Burns, J.K.: Physiological changes associated with senescence and abscission in mature citrus fruit induced by 5-chloro-3-methyl-4-nitro-1H-pyrazole and ethephon application. — Physiol. Plant. 127: 66–73, 2006.CrossRefGoogle Scholar
  2. Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline in water-stress studies. — Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  3. Cakmak, I., Horst, W.J.: Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). — Physiol. Plant. 83: 463–468, 1991.CrossRefGoogle Scholar
  4. Clough, S.J., Bent, A.F.: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. — Plant J. 16: 735–743, 1998.PubMedCrossRefGoogle Scholar
  5. James, G.W., Wang, H.Y., Daniel, J.G.: Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures. — Plant mol. Biol. 35: 323–330, 1997.CrossRefGoogle Scholar
  6. Oberschall, A., Deak, M., Torok, K., Sass, L., Vass, I., Kovacs, I., Feher, A., Dudits, D., Horvath, G.V.: A novel aldose/ aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. — Plant J. 24: 437–446, 2000.PubMedCrossRefGoogle Scholar
  7. Peng, R.H., Huang, X.M., Li, X., Sun, A.J., Yao, Q.H., Peng, Y.L.: Construction of a plant binary expression vector containing intron-kanamycin gene and transformation in Nicotiana tabacum. — Acta phytophysiol. sin. 27: 55–60, 2001.Google Scholar
  8. Peng, R.H., Xiong, A.S., Yao, Q.H.: A direct and efficient PAGE-mediated overlap extension method for gene multiple-site mutagenesis. — Appl. Microbiol. Biotechnol. 73: 234–240, 2006.PubMedCrossRefGoogle Scholar
  9. Rammesmayer, G., Pichorner, H.D., Adams, P., Jensen, R.G., Bohnert, H.J.: Characterization of IMT1, myo-Inositol Omethyltransferase, from Mesembryanthemum crystallinum. — Arch. Biochem. Biophys. 322: 183–188, 1995.PubMedCrossRefGoogle Scholar
  10. Sanchez, F.J., Manzaranes, M., De Andres, E.F., Tenorio, J.L., Ayerbe, L.: Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. — Field Crops Res. 59: 225–235, 1998.CrossRefGoogle Scholar
  11. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M, Enju, A., Sakurai, T., Satou, M, Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., Shinozaki, K.: Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. — Plant J. 31: 279–292, 2002.PubMedCrossRefGoogle Scholar
  12. Sheveleva, E., Chmara, W., Bohnert, H.J., Jensen, R.G..: Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. — Plant Physiol. 115: 1211–1219, 1997.PubMedGoogle Scholar
  13. Sunkar, P., Bartels, D., Kirch, H.H.: Overexpression of a stressinducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. — Plant J. 35: 452–464, 2003.PubMedCrossRefGoogle Scholar
  14. Thomashow, M.F.: Role of cold-responsive genes in plant freezing tolerance. — Plant Physiol. 118: 1–7, 1998.PubMedCrossRefGoogle Scholar
  15. Thomashow, M.F.: Plant cold acclimation, freezing tolerance genes and regulatory mechanisms. — Annu. Rev. Plant. Physiol. Plant. mol. Biol. 50: 571–599, 1999.PubMedCrossRefGoogle Scholar
  16. Tsutsui, T., Kato, W., Asada, Y., Sako, K., Sako, K., Sonoda, Y., Kidokoro, S., Yamaguchi-Shinozaki, K., Tamaoki, M., Arakawa, K., Ichikawa, T., Nakazawa, M., Seki, M., Shinozaki, K., Matsui, M., Ikeda, A., Yamaguchi, J.: DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. — J. Plant Res. 122: 633–643, 2009.PubMedCrossRefGoogle Scholar
  17. Vernon, D.M., Bohnert, H.J.: A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum cytstallinum. — The EMBO J. 11: 2077–2085, 1992.Google Scholar
  18. Watanabe, S., Kojima, K., Ide, Y., Sasaki, S.: Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. — Plant Cell Tissue Organ Cult. 63: 199–206, 2000.CrossRefGoogle Scholar
  19. Xiong, A.S., Yao, Q.H., Peng, R.H., Li, X., Fan, H.Q., Cheng, Z.M., Li, Y.: A simple, rapid, high-fidelity and costeffective PCR-based two-step DNA synthesis method for long gene sequence. — Nucl. Acids Res. 32 (Suppl.): e98, 2004.Google Scholar
  20. Xiong, A.S., Yao, Q.H., Peng, R.H., Duan, H., Li, X., Fan, H.Q., Cheng, Z.M., Li, Y.: PCR-based accurate synthesis of long DNA sequences. — Nat. Protocols 1: 791–797, 2006.CrossRefGoogle Scholar
  21. Xue, Y., Peng, R., Xiong, A., Li, X., Zha, D., Yao, Q.: Overexpression of heat shock protein gene hsp26 in Arabidopsis thaliana enhances heat tolerance. — Biol. Plant. 54: 105–111, 2010.CrossRefGoogle Scholar
  22. Yemm, E.W., Willis, A.J.: The estimation of carbohydrates in plant extracts by anthrone. — Biochem. J. 57: 508–514, 1954.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • B. Zhu
    • 1
    • 2
  • R. -H. Peng
    • 1
  • A. -S. Xiong
    • 1
  • J. Xu
    • 3
  • X. -Y. Fu
    • 1
  • W. Zhao
    • 1
  • X. -F. Jin
    • 1
  • X. -R. Meng
    • 4
  • J. -J. Gao
    • 3
  • R. Cai
    • 2
  • Q. -H. Yao
    • 1
  1. 1.Agro-Biotechnology Research CenterShanghai Academy of Agricultural SciencesShanghaiP.R. China
  2. 2.College of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiP.R. China
  3. 3.College of HorticultureNanjing Agricultural UniversityNanjingP.R. China
  4. 4.College of Bioscience and BiotechnologyYangzhou UniversityYangzhouP.R. China

Personalised recommendations