Biologia Plantarum

, Volume 56, Issue 1, pp 111–116 | Cite as

Transcriptome analysis of an invasive weed Mikania micrantha

  • Y. -L. Huang
  • X. -T. Fang
  • L. Lu
  • Y. -B. Yan
  • S. -F. Chen
  • L. Hu
  • C. -C. Zhu
  • X. -J. Ge
  • S. -H. Shi


As an initial step towards understanding the molecular mechanisms by which plants become invasive, we present here the first transcriptome analysis for an invasive weed Mikania micrantha. The analysis was based on the 75-nucleotide short reads data generated by the Illumina Genome Analyzer II system. A total of 31 131 unique sequences were assembled de novo based on 8.7 million filtered paired-end sequence reads for the transcriptome of an individual M. micrantha growing in the field. 73 % of the unique sequences showed significant similarity to existing proteins in the NCBI database, and 21 448 could be grouped based on gene ontology assignments. Of particular interest are the sequences that share homology with genes involved in genome evolution, plasticity, secondary metabolism and defense responses.

Additional key words

gene ontology Illumina Genome Analyzer II system sequence annotation 



extensive expressed sequence tag


polymerase chain reaction


Gene ontology


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work was supported by National Natural Science Foundation of China (40876075, 31070290, 30730008 and 40976081), National Basic Research Program of China (2007CB815701, 2009CB119204), the Natural Science Foundation of Guangdong Province (8151027501000089), Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, the Fundamental Research Funds for the Central Universities (09lgpy35), SKLBC09A06 and SKLBC09F06.


  1. Ainouche, M.L., Fortune, P.M., Salmon, A., Parisod, C., Grandbastien, M.A., Fukunaga, K., Ricou, M. Misset, M.T.: Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). — Biol. Invasions 11: 1159–1173, 2009.CrossRefGoogle Scholar
  2. Aparicio, G., Götz, S., Conesa, A., Segrelles, D., Blanquer, I., García, J.M., Hernandez, V., Robles, M., Talon, M.: Blast2GO goes grid: developing a grid-enabled prototype for functional genomics analysis. — Stud. Health Technol. Inform. 120: 194–204, 2006.PubMedGoogle Scholar
  3. Bentley, D.R.: Whole-genome re-sequencing. — Curr. Opin. Genet. Dev. 16: 45–552, 2006.CrossRefGoogle Scholar
  4. Berardini, T.Z., Mundodi, S., Reiser, L., Huala, E., Hernandez, M.G., Zhang, P., Mueller, L.A., Yoon, J., Doyle, A., Lander, G., Moseyko, N., Yoo, D., Xu, I., Zoeckler, B., Montoya, M., Miller, N., Weems, D., Rhee, S.Y.: Functional annotation of the Arabidopsis genome using controlled vocabularies. — Plant. Physiol. 135: 745–755, 2004.PubMedCrossRefGoogle Scholar
  5. Broz, A.K., Broeckling, C.D., He, J.B., Dai, X.B., Zhao, P.X., Vivanco, J.M.: A first step in understanding an invasive weed through its genes: an EST analysis of invasive Centaurea maculosa. — BMC Plant. Biol. 7: 25, 2007.PubMedCrossRefGoogle Scholar
  6. Conesa, A., Götz, S., Garcìa-Gòmez, J.M., Terol, J., Talón, M., Robles, M.: Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. — Bioinformatics 21: 3674–3676, 2005.PubMedCrossRefGoogle Scholar
  7. Dassanayake, M., Haas, J.S., Bohnert, H.J., Cheeseman, J.M.: Shedding light on an extremophile lifestyle through transcriptomics. — New Phytol. 183: 74–75, 2009.CrossRefGoogle Scholar
  8. Dohm, J.C., Lottaz, C., Borodina, T., Himmelbauer, H.: Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. — Nucleic Acids Res. 36: e105, 2008.PubMedCrossRefGoogle Scholar
  9. Flicek, P., Birney, E.: Sense from sequence reads: methods for alignment and assembly. — Natur. Methods 6: s6–s12, 2009.CrossRefGoogle Scholar
  10. Fu, X., Deng, S., Su, G., Zeng, Q., Shi, S.: Isolating high-quality RNA from mangroves without liquid nitrogen. — Plant. mol. Biol. Rep. 22: 1–5, 2004.CrossRefGoogle Scholar
  11. Galla, G., Barcaccia, G., Ramina, A., Collani, S., Alagna, F., Baldoni, L., Cultrera, N.G., Martinelli, F., Sebastiani, L., Tonutti, P.: Computational annotation of genes differentially expressed along olive fruit development. — BMC Plant. Biol. 9: 128–145, 2009.PubMedCrossRefGoogle Scholar
  12. Hernandez, D., Francois, P., Farinelli, L., Østerås, M., Schrenzel, J.: De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. — Genome Res. 18: 802–809, 2008.PubMedCrossRefGoogle Scholar
  13. Holm, L.G., Plucknett, D.L., Pancho, J.V., Herberger, J.P.: The World’s Worst Weeds: Distribution and Biology. — East-West Center/University Press of Hawaii, Honolulu 1977.Google Scholar
  14. Huang, X., Madan, A.: CAP3: A DNA sequence assembly program. — Genome Res. 9: 868–877, 1999.PubMedCrossRefGoogle Scholar
  15. Imelfort, M., Edwards, D.: De novo sequencing of plant genomes using second-generation technologies. — Brief. Bioinform. 10: 609–618, 2009.PubMedCrossRefGoogle Scholar
  16. Jackson, B.G., Schnable, P.S., Aluru, S.: Parallel short sequence assemble of transcriptomes. — BMC Bioinform. 10: S14, 2009.CrossRefGoogle Scholar
  17. Karrenberg, S., Widmer, A.: Ecologically relevant genetic variation from a non-Arabidopsis perspective. — Curr. Opin. Plant Biol. 11: 156–162, 2008.PubMedCrossRefGoogle Scholar
  18. Kong, G.H., Wu, Q.G., Hu, Q.M.: Appearing of exotic weed Mikania micrantha H.B.K. in China. — J. trop. subtrop. Bot. 8: 27, 2000.Google Scholar
  19. Lee, C.E.: Evolutionary genetics of invasive species. — Trends Ecol Evol 17: 386–391, 2002.CrossRefGoogle Scholar
  20. Levine, D.A.: Ecological speciation: lessons from invasive species. — Syst. Bot. 28: 643–650, 2003.Google Scholar
  21. Li, M.G., Zhang, W.Y., Liao, W.B.: The history and status of the study on Mikania micrantha. — Ecol. Sci. 19: 41–45, 2000.Google Scholar
  22. Lowe, S., Browne, M., Boudjelas, S.: 100 of the World’s Worst Invasive Alien Species, a Selection from the Global Invasive Species Database. IUCN/SSC Invasive Species Specialist Group (ISSG), Auckland 2001.Google Scholar
  23. Ma, K.H., Kim K.H., Dixit, A., Chung, I.M., Gwag, J.G., Kim, T.S., PARK, Y.J.: Assessment of genetic diversity and relationships among Coix lacryma-jobi accessions using microsatellite markers. — Biol. Plant. 54: 272–278, 2010.CrossRefGoogle Scholar
  24. Pop, M., Salzberg, S.L.: Bioinformatics challenges of new sequencing technology. — Trends Genet. 24: 142–149, 2008.PubMedCrossRefGoogle Scholar
  25. Prentis, P.J., Wilson, J.R., Dormontt, E.E., Richardson, D.M., Lowe, A.J.: Adaptive evolution in invasive species. — Trends Plant Sci. 13: 288–294, 2008.PubMedCrossRefGoogle Scholar
  26. Reusch, T., Wood, T.: Molecular ecology of global change. — Mol. Ecol. 16: 3973–3992, 2007.PubMedCrossRefGoogle Scholar
  27. Richardson, D.M., Pyšek, P.: Plant invasions: merging the concepts of species invasiveness and community invasibility. — Prog. Phys. Geogr. 30: 409–431, 2006.CrossRefGoogle Scholar
  28. Sax, D.F., Stachowicz, J.J., Brown, J.H., Bruno, J.F., Dawson, M.N., Gaines, S.D., Grosberg, R.K., Hastings, A., Holt, R.D., Mayfield, M.M., O’Connor, M.I., Rice, William, R.: Ecological and evolutionary insights from species invasions. — Trends Ecol. Evol. 22: 465–471, 2007.PubMedCrossRefGoogle Scholar
  29. Schuster, S.C.: Next-generation sequencing transforms today’s biology. — Natur. Methods 5: 6–18, 2008.Google Scholar
  30. Shendure, J., Ji, H.: Next-generation DNA sequencing. — Natur. Biotechnol. 26: 1135–1145, 2008.CrossRefGoogle Scholar
  31. Sikdar, B., Bhattacharya, M., Mukherjee, A., Banerjee, A., Ghosh, E., Ghosh, B., Roy, S.C.: Genetic diversity in important members of Cucurbitaceae using isozyme, RAPD and ISSR markers. — Biol. Plant. 54: 135–140, 2010.CrossRefGoogle Scholar
  32. Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J., Birol, I.: AbySS: a parallel assembler for short read sequence data. — Genome Res. 19: 1117–1123, 2009.PubMedCrossRefGoogle Scholar
  33. Viana, A.K.C., Souza, M.M., Araújo, I.S., Corrêa, R.X., Ahnert, D.: Genetic diversity in Passiflora species determined by morphological and molecular characteristics. — Biol. Plant. 54: 535–538, 2010.CrossRefGoogle Scholar
  34. Wang, T., Su, Y., Chen, G.: Population genetic variation and structure of the invasive weed Mikania micrantha in Southern China: Consequences of rapid range expansion. — J. Hered. 99: 22–33, 2008.PubMedCrossRefGoogle Scholar
  35. Yan, Y.B., Huang, Y.L., Fang, X.T., Lu, L., Zhou, R.C., Ge, X.J., Shi, S.H.: Development and characterization of EST-SSRs in an invasive weed Mikania micrantha (Asteraceae). — Amer. J. Bot. 98(Suppl.): e1–e3, 2011.CrossRefGoogle Scholar
  36. Zdobnov, E.M., Apweiler, R.: InterProScan — an integration platform for the signature-recognition methods in InterPro. — Bioinformatics 17: 847–884, 2001.PubMedCrossRefGoogle Scholar
  37. Zerbino, D.R., Birney, E.: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. — Genome Res. 18: 821–829, 2008.PubMedCrossRefGoogle Scholar
  38. Zhang, L.L., Wen, D.Z., Fu, S.L.: Responses of photosynthetic parameters of Mikania micrantha and Chromolaena odorata to contrasting irradiance and soil moisture. — Biol. Plant. 53: 517–522, 2009.CrossRefGoogle Scholar
  39. Zhang, L.Y., Ye, W.H., Cao, H.L., Feng, H.L: Mikania micrantha H. B. K. in China — an overview. — Weed Res. 44: 42–49, 2004.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Y. -L. Huang
    • 1
  • X. -T. Fang
    • 1
  • L. Lu
    • 1
  • Y. -B. Yan
    • 1
  • S. -F. Chen
    • 1
  • L. Hu
    • 1
  • C. -C. Zhu
    • 1
  • X. -J. Ge
    • 2
  • S. -H. Shi
    • 1
  1. 1.State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant ResourcesSun Yat-Sen UniversityGuangzhouP.R. China
  2. 2.South China Botanical GardenChinese Academy of SciencesGuangzhouP.R. China

Personalised recommendations