Advertisement

Biologia Plantarum

, Volume 56, Issue 1, pp 64–70 | Cite as

Differential gene expression in response to cold stress in Lepidium apetalum during seedling emergence

  • H. X. Zhao
  • Q. Li
  • G. Li
  • Y. Du
Original Papers

Abstract

Germination of Lepidium apetalum Wild. seeds is invariably arrested by cold stress. cDNA-amplified fragment length polymorphism (AFLP) technique was used to isolate genes relevant to chilling stress (4 °C) during seedling emergence. 43 transcript-derived fragments (TDFs) were found to be up-regulated and 17 down-regulated during chilling stress. Eighteen TDF of up-regulated genes were cloned and sequenced. Some of these genes are involved in the stress response, some play important roles in energy and substrate metabolism, and some encode unknown proteins such as TDF119. Two sequences, designated TDF217 and TDF223, may correspond to novel genes. The expression profiles of 6 from 18 TDFs were analyzed by quantitative real-time PCR under chilling and abscisic acid (ABA) stress. It was demonstrated that all 6 genes were significantly induced by chilling and their expression was decreased when the temperature was shifted from 4 to 25 °C. The transcriptional levels of 5 TDFs were strongly enhanced also in response to exogenous ABA. Based on the characteristics of genes isolated from seedlings exposed to cold stress, we conclude that Lepidium adapts to cold stress by regulating many signal transduction pathways, including both ABA-dependent and ABA-independent signaling pathways.

Additional key words

AFLP chilling quantitative real-time PCR 

Abbreviations

AFLP

amplified fragment length polymorphism

qRT-PCR

quantitative real-time polymerase chain reaction

TDFs

transcript-derived fragments

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to Prof. X. Zhao for collection and identification of seeds and to Prof. J. Qin for great help with the experiments. This work was supported by the Key Scientific Projects for Supporting Xinjiang Uygur Autonomous Region in China (No. 200840102-40).

References

  1. Agarwal, P.K., Jha, B.: Transcription factors in plants and ABA dependent and independent abiotic stress signaling. — Biol. Plant. 54: 201–212, 2010.CrossRefGoogle Scholar
  2. Allen, D.J., Ort, D.R.: Impacts of chilling temperatures on photosynthesis in warm-climate plants. — Trends Plant Sci. 6: 36–42, 2001.Google Scholar
  3. Bachem, C.W., Van der Hoeven, R.S., De Bruijn, S.M., Vreugdenhil, D., Zabeau, M., Visser, R.G.: Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. — Plant J. 9: 745–753, 1996.PubMedCrossRefGoogle Scholar
  4. Baird, S.D., Lewis, S.M., Turcotte, M., Holcik, M.: A search for structurally similar cellular internal ribosome entry sites. — Nucl. Acids Res. 35: 4664–4677, 2007.PubMedCrossRefGoogle Scholar
  5. Bellefroid, E.J., Sahin, M., Poncelet, D.A., Riviere, M., Bourguignon, C., Martial, J.A., Morris, P.L., Pieler, T., Szpirer, C., Ward, D.C.: Kzf1 — a novel KRAB zinc finger protein encoding gene expressed during rat spermatogenesis. — Biochim biophys Acta. 1398: 321–329, 1998.PubMedGoogle Scholar
  6. Cheng, L.B., Huan, S.T., Sheng, Y.D., Hua, X.J., Shu, Q.Y., Song, S.Q., Jing, X.M.: GMCHI, cloned from soybean [Glycine max (L.) Meer.], enhances survival in transgenic Arabidopsis under abiotic stress. — Plant Cell Rep. 28: 145–153, 2009a.PubMedCrossRefGoogle Scholar
  7. Cheng, L.B., Li, S.Y., He, G.Y.: Isolation and expression profile analysis of genes relevant to chilling stress curing seed imbibition in soybean [Glycine max (L.)Meer.]. — Agr. Sci. China 8: 521–528, 2009b.CrossRefGoogle Scholar
  8. Chern, M.S., Eiben, H.G., Bustos M.M.: The developmentally regulated bZIP factor ROM1 modulates transcription from lectin and storage protein genes in bean embryos. — Plant J. 10: 135–148, 1996.Google Scholar
  9. Choo, H.J., Kim, B.W., Kwon, O.B., Lee, C.S., Choi, J.S., Ko, Y.G.: Secretion of adenylate kinase 1 is required for extracellular ATP synthesis in C2C12 myotubes. — Exp. mol. Med. 40: 220–228, 2008.PubMedCrossRefGoogle Scholar
  10. Donson, J., Fang, Y., Espiritu-Santo, G., Xing, W., Salazar, A., Miyamoto, S., Armendarez, V., Volkmuth, W.: Comprehensive gene expression analysis by transcript profiling. — Plant mol. Biol. 48: 75–97, 2002.PubMedCrossRefGoogle Scholar
  11. Dzeja, P.P., Terzic, A.: Phosphotransfer networks and cellular energetics. — J. exp. Biol. 206: 2039–2047, 2003.PubMedCrossRefGoogle Scholar
  12. Fowler, S., Thomashow, M.F.: Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. — Plant Cell 14: 1675–1690, 2002.PubMedCrossRefGoogle Scholar
  13. Guo, J.R., Schnieder, F., Verreet, J.A.: Differences between the fingerprints generated from total RNA and poly-A RNA using a modified procedure of cDNA-AFLP and silver staining. — Biotechnol Lett. 28: 267–270, 2006.PubMedCrossRefGoogle Scholar
  14. Guy, C.: Cold acclimation and freezing stress tolerance: role of protein metabolism. — Annu. Rev. Plant. Physiol Plant mol. Biol. 41: 187–223, 1990.CrossRefGoogle Scholar
  15. Holmes, D.I., Wahab, N.A., Mason, R.M.: Cloning and characterization of ZNF236, a glucose-regulated Kruppellike zinc-finger gene mapping to human chromosome 18q22–q23. — Genomics 60: 105–109, 1999.PubMedCrossRefGoogle Scholar
  16. Holmgren, A.: Hydrogen donor system for Escherichia coli ribonucleoside-diphosphate reductase dependent upon glutathione. — Proc. nat. Acad. Sci. USA 73: 2275–2279, 1976.PubMedCrossRefGoogle Scholar
  17. Hughes, M.A., Dunn, M.A.: The molecular biology of plant acclimation to low temperature. — J. exp. Biol. 47: 291–305, 1996.Google Scholar
  18. Hurst, H.C.: Protein Profile. — Academic Press, London 1995.Google Scholar
  19. Hu, X.J., Zhang, Z.B., Xu, P., Fu, Z.Y., Hu, S.B. Song, W.Y.: Multifunctional genes: the ross-talk among the regulation networks of abiotic stress responses. — Biol. Plant. 54: 213–223, 2010.CrossRefGoogle Scholar
  20. Ichimura, K., Mizoguchi, T., Yoshida, R.: Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATM PK and ATM PK 6. — Plant J. 24: 655–665, 2000.PubMedCrossRefGoogle Scholar
  21. Ismail, A.M., Hall, A.E.: Variation in traits associated with chilling tolerance during emergence in cowpea germplasm. — Field Crops Res. 77: 99–113, 2002.CrossRefGoogle Scholar
  22. Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., Thomashow, M.F.: Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. — Science 280: 104–106, 1998.PubMedCrossRefGoogle Scholar
  23. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. — Nat. Biotechnol. 17: 287–291, 1999.PubMedCrossRefGoogle Scholar
  24. Kong, J., Cao, W.H., Zhang, J.S.: Transgenic analysis of a salt — inhibited OsZFP1 gene fromrice. — Acta bot. sin. 46: 573–577, 2004.Google Scholar
  25. Liu, P., Zhao, S., Meng, Q.W., Wei, Y.Y., Zou, Q.: Effects of cold hardening on photosynthetic performance and chilling induced photo inhibition in sweet pepper leaves. — Plant Physiol. mol. Biol. 28: 51–58, 2002.Google Scholar
  26. Livak, K.J., Schmittgen, T.D.: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. — Methods 25: 402–408, 2001.PubMedCrossRefGoogle Scholar
  27. Mallappa, C., Yadav, V., Negi, P., Chattopadhyay, S.: A basic leucine zipper transcription factor, G-box-binding factor 1, regulates blue light-mediated photomorphogenic growth in Arabidopsis. — J. biol. Chem. 281: 22190–22199, 2006.PubMedCrossRefGoogle Scholar
  28. Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K., Yamaguchi-Shinozaki, K.: Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. — Plant J. 38: 982–993, 2004.PubMedCrossRefGoogle Scholar
  29. Nag, R., Maity, M.K., Dasgupta, M.: Dual DNA binding property of ABA insensitive 3 like factors targeted to promoters responsive to ABA and auxin. — Plant mol. Biol. 59: 821–838, 2005.Google Scholar
  30. Nuhse, T.S., Peck, S.C., Hirt, H., Boller, T.: Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. — J. biol. Chem. 275: 7521–7526, 2000.PubMedCrossRefGoogle Scholar
  31. Petersen, M., Brodersen, P., Naested, H., Andreasson, E., Lindhart, U., Johansen, B., Nielsen, H.B., Lacy, M., Austin, M.J., Parker, J.E., Sharma, S.B., Klessig, D.F., Martienssen, R., Mattsson, O., Jensen, A.B., Mundy, J.: Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. — Cell 103: 1111–1120, 2000.PubMedCrossRefGoogle Scholar
  32. Randak, C.O., Welsh, M.J.: Adenylate kinase activity in ABC transporters. — J. biol. Chem. 280: 34385–34388, 2005.PubMedCrossRefGoogle Scholar
  33. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., Shinozaki, K.: Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. — Plant Cell 13: 61–72, 2001.PubMedCrossRefGoogle Scholar
  34. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., Shinozaki, K.: Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. — Plant J. 31: 279–292, 2002.PubMedCrossRefGoogle Scholar
  35. Siridechadilok, B., Fraser, C.S., Hall, R.J., Doudna, J.A., Nogales, E.: Structural roles for human translation factor eIF3 in initiation of protein synthesis. — Science 310: 1513–1515, 2005.PubMedCrossRefGoogle Scholar
  36. Stanojevic, V., Habener, J.F., Holz, G.G., Leech, C.A.: Cytosolic adenylate kinases regulate K-ATP channel activity in human beta-cells. — Biochem. biophys. Res. Commun. 368: 614–619, 2008.PubMedCrossRefGoogle Scholar
  37. Strauss, A.J., Kruger, G.H.J., Strasser, R.J., Van Heerden, P.D.R.: Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. — Environ. exp. Bot. 56: 147–157, 2006.CrossRefGoogle Scholar
  38. Thieringer, H.A., Jones, P.G., Inouye, M.: Cold shock and adaptation. — Bioessays 20: 49–57, 1998.PubMedCrossRefGoogle Scholar
  39. Thomashow, M.F.: Role of cold-responsive genes in plant freezing tolerance. — Plant Physiol. 118: 1–8, 1998.PubMedCrossRefGoogle Scholar
  40. Thomashow, M.F.: Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 571–599, 1999.PubMedCrossRefGoogle Scholar
  41. Thurow, C., Schiermeyer, A., Krawczyk, S., Butterbrodt, T., Nickolov, K., Gatz, C.: Tobacco bZIP transcription factor TGA2.2 and related factor TGA2.1 have distinct roles in plant defense responses and plant development. — Plant J. 44: 100–113, 2005.Google Scholar
  42. Trachsel, H., Staehelin, T.: Initiation of mammalian protein synthesis. The multiple functions of the initiation factor eIF-3. — Biochim. biophys. Acta 565: 305–314, 1979.PubMedGoogle Scholar
  43. Van Heerden, P.D., Tsimilli, M.M., Kruger, G.H., Strasser, R.J.: Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation. — Physiol Plant. 117: 476–491, 2003.PubMedCrossRefGoogle Scholar
  44. Viswanathan, C., Zhu, J.K.: Molecular genetic analysis of coldregulated gene transcription. — Phil. Trans. roy. Soc. London B Biol. Sci. 357: 877–886, 2002.CrossRefGoogle Scholar
  45. Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., Thomashow, M.F.: Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. — Plant J. 41: 195–211, 2005.PubMedCrossRefGoogle Scholar
  46. Vos, P., Hogers, R., Bleeker, M., Reijans, M., Van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M..: AFLP: a new technique for DNA fingerprinting. — Nucl. Acids Res. 23: 4407–4414, 1995.PubMedCrossRefGoogle Scholar
  47. Vuylsteke, M., Daele, H., Vercauteren, A., Zabeau, M., Kuiper, M.: Genetic dissection of transcriptional regulation by cDNA-AFLP. — Plant J. 45: 439–446, 2006.PubMedCrossRefGoogle Scholar
  48. Walker, D.J., Romero, P., Correal, E.: Cold tolerance, water relations and accumulation of osmolytes in Bituminaria bituminosa. — Biol. Plant. 54: 293–298, 2010.CrossRefGoogle Scholar
  49. Winicov, I.I., Bastola, D.R.: Transgenic overexpression of the transcription factor alfin1 enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants. — Plant Physiol. 120: 473–480, 1999.PubMedCrossRefGoogle Scholar
  50. Yamaguchi-Shinozaki, K., Shinozaki, K.: Organization of cisacting regulatory elements in osmotic- and cold-stressresponsive promoters. — Trends Plant Sci. 10: 88–94, 2005.PubMedCrossRefGoogle Scholar
  51. Xiao, P.G.: Modern Chinese Materia Medica. Vol. 2. — Chemical Industry Press, Beijing 2002.Google Scholar
  52. Yu, S.W., Tang, K.X.: MAP kinase cascades responding to environmental stress in plants. — Acta bot. sin. 46: 127–136, 2004.Google Scholar
  53. Zhang, X.Y., Liang, C., Wang, G. P., Luo, Y., Wang, W.: The protection of wheat plasma membrane under cold stress by glycine betaine overproduction. — Biol. Plant. 54: 83–88, 2010.CrossRefGoogle Scholar
  54. Zhao, H.X., Li, Q., Zhou, J., Li, G.: The characteristics of low temperature tolerance during seed germination of the ephemeral plant lepidium. — Acta bot. yunnanica 32: 448–454, 2010.Google Scholar
  55. Zhou, M., Sandercock, A.M., Fraser, C.S., Ridlova, G., Stephens, E., Schenauer, M.R., Yokoi-Fong, T., Barsky, D., Leary, J.A., Hershe, J.W.: Mass spectrometry special feature: mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. — PNAS 105: 18139–18144, 2008.PubMedCrossRefGoogle Scholar
  56. Zhou, T.Y., Guo, R.L.: Flora of China. — Beijing Science and Technology Press, Beijing 1987.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.College of Life Science and TechnologyXinjiang UniversityUrumqiP.R. China
  2. 2.College of Life ScienceXinjiang Normal UniversityUrumqiP.R. China

Personalised recommendations