Biologia Plantarum

, 55:797 | Cite as

Callus induction and plant regeneration from immature embryos of Brachypodium distachyon with different chromosome numbers

  • R. Hammami
  • A. Cuadrado
  • E. Friero
  • N. Jouve
  • C. Soler
  • J. M. González
Brief Communication


The paper reports the in vitro cultivation of two commercial lines and 23 wild populations (with 10, 20 and 30 chromosomes) of Brachypodium distachyon. Callus induction was assayed on Murashige and Skoog medium containing 1 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D) with 30 g dm−3 of sucrose (MSs) or maltose (MSm). No significant differences were seen between the two media with respect to callus induction. Calli were transferred to MSm medium without 2,4-D but containing 0.1 mg dm−3 of 6-benzylaminopurine for plant regeneration. The plant regeneration response was very variable depending on the original induction medium, although no overall preference for one or the other medium was seen. The three main culture stages (callus induction, plant regeneration, and green plantlets formation) are probably differently controlled in the plants with different chromosome numbers. This supports the idea that the three cytotypes of Brachypodium cultured actually belong to different species.

Additional key words

in vitro culture auxin cytokinin maltose saccharose 





2,4-dichlorophenoxyacetic acid


Murashige and Skoog medium with maltose


MS medium with saccharose.



This study was supported by grants from the Spanish Ministry of Science and Innovation (AGL 2009-10373). The authors would like to thank Adrian Burton for linguistic assistance.


  1. Bablak, P., Draper, J., Davey, M.R., Lynch, P.T.: Plant regeneration and micropropagation of Brachypodium distachyon. — Plant Cell Tissue Organ Cult. 42: 97–107, 1995.CrossRefGoogle Scholar
  2. Bohorova, N.R., Pfeiffer, W.H., Mergoum, M., Crossa, M., Pacheco, M., Estañol, P.: Regeneration potential of CIMMYT durum wheat and triticale varieties from immature embryos. — Plant Breed. 120: 291–295, 2001.CrossRefGoogle Scholar
  3. Catalán, P., Olmstead, G.R.: Phylogenetic reconstruction of the genus Brachypodium Beauv. (Poaceae) from combined sequences of chloroplast gene and nuclear ITS. — Plant Syst. Evol. 220: 1–19, 2000.CrossRefGoogle Scholar
  4. Chowdhury, S.H., Kato, K., Yamamoto, Y., Hayashi, K.: Varietal variation in plant regeneration capacity from immature embryo among common wheat cultivars. — Jap. J. Breed. 41: 443–450, 1991.Google Scholar
  5. Christiansen, P., Andersen, C.H., Didion, T., Folling, M., Nielsen, K.K.: A rapid and efficient transformation protocol for the grass Brachypodium distachyon. — Plant Cell Rep. 23: 751–758, 2005.PubMedCrossRefGoogle Scholar
  6. Cuadrado, A., Jouve, N.: The non-random distribution of long clusters of all possible classes of trinucleotide repeats in barley chromosomes. — Chromosome Res. 15: 711–720, 2007.PubMedCrossRefGoogle Scholar
  7. Dabul, A.N.G., Blefant-Miller, H., Roy Chowdhury, M., Hubstenberger, J.F., Lorence, A., Phillips, G.C.: Screening vitro rapid plant regeneration and development of an early prediction system. — In Vitro cell. dev. Biol. Plant 45: 414–420, 2009.Google Scholar
  8. Dahleen, L.S., Bregitzer, P.: An improved media system for high regeneration rates from barley immature embryoderived callus cultures of commercial cultivars. — Crop Sci. 42: 934–938, 2002.CrossRefGoogle Scholar
  9. Draper, J., Mur, L.A.J., Jenkins, G., Ghosh-Biswas, G.C., Bablak, P., Hasterok, R., Routledge, A.P.M.: Brachypodium distachyon. A new model system for functional genomics in grasses. — Plant Physiol. 127: 1539–1555, 2001.PubMedCrossRefGoogle Scholar
  10. Eudes, F., Acharya, S., Laroche, A., Selinger, L.B., Cheng, K.J.: A novel method to induce direct somatic embryogenesis, secondary embryogenesis and regeneration of fertile green cereal plants. — Plant Cell Tissue Organ Cult. 73: 147–157, 2003.CrossRefGoogle Scholar
  11. Filiz, E., Ozdemir, B.S., Budak, F., Vogel, J.P.: Tuna, M.; Budak, H. Molecular, morphological, and cytological analysis of diverse Brachypodium distachyon inbred lines. — Genome 52: 876–890, 2009.PubMedCrossRefGoogle Scholar
  12. González, J.M., Friero, E., Jouve, N.: Influence of genotype and culture medium on callus formation and plant regeneration from immature embryos of Triticum turgidum Desf. cultivars. — Plant Breed. 120: 513–517, 2001.CrossRefGoogle Scholar
  13. González, J.M., Jouve, N.: Improvement of anther culture media for haploid production in triticale. — Cereal Res. Commun. 28: 65–72, 2000.Google Scholar
  14. Hasterok, R., Draper, J., Jenkins, G.: Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon (L) Beav. — Chromosome Res. 12: 397–403, 2004.PubMedCrossRefGoogle Scholar
  15. Idziak, D., Hasterok, R.: Cytogenetic evidence of nucleolar dominance in allotetraploid species of Brachypodium. — Genome 51: 387–391, 2008.PubMedCrossRefGoogle Scholar
  16. Li, H.P., Huang, T., Wang, C.X., Liao Y.C.: An efficient regeneration system of barley cultivars from leaf base segments. — Biol. Plant. 53: 733–736, 2009.CrossRefGoogle Scholar
  17. Mendoza, M.G., Kaeppler, H.F.: Auxin and sugar effects on callus induction and plant regeneration frequencies from mature embryos of wheat (Triticum aestivum L.). — In Vitro cell. dev. Biol. Plant 38: 39–45, 2002.CrossRefGoogle Scholar
  18. Murashige, R., Skoog, F.: A revised medium for rapid growth bioassays with tobacco tissue cultures. — Physiol Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  19. Opanowicz, M., Vain, P., Draper, J., Parker, D., Doonan, J.H.: Brachypodium distachyon: making hay with a wild grass. — Trends Plant Sci. 13: 172–177, 2008.PubMedCrossRefGoogle Scholar
  20. Ozbay, A., Özgen, M.: Is hetrosis noticeable in the callus response of winter durum wheat F1 hybrids? — Biol. plant. 54: 769–772, 2010.CrossRefGoogle Scholar
  21. Robertson, I.H.: Chromosome numbers in Brachypodium Beauv. (Gramineae). — Genetica 56: 55–60, 1981.CrossRefGoogle Scholar
  22. Soler, C., Casanova, C., Rojo, A.: Desarrollo de cubiertas vegetales a partir de gramíneas seleccionadas para su explotación en tierras de olivar. — Acta hort. 41: 97–100, 2004.Google Scholar
  23. Vain, P., Worland, B., Thole, V., McKenzie, N., Alves, S.C., Opanowicz, M., Fish, L.J, Bevan, M.W., Snape, J.W.: Agrobacterium-mediated transformation of the temperate grass Brachypodium distachyon (genotype Bd21) for TDNA insertional mutagenesis. — Plant Biotechnol. J. 6: 236–245, 2008.PubMedCrossRefGoogle Scholar
  24. Vogel, J.P., Garvin, D.F., Leong, O.M., Hayden, D.M.: Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. — Plant Cell Tissue Organ Cult. 84: 199–211, 2006.CrossRefGoogle Scholar
  25. Vogel, J.P., Hill, T.: High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred lines Bd21-3. — Plant Cell Rep. 27: 471–478, 2008.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • R. Hammami
    • 1
  • A. Cuadrado
    • 1
  • E. Friero
    • 1
  • N. Jouve
    • 1
  • C. Soler
    • 2
  • J. M. González
    • 1
  1. 1.Departamento de Biología Celular y Genética, Campus UniversitarioUniversidad de AlcaláMadridSpain
  2. 2.Departamento de Medio AmbienteI.N.I.A., Finca La CanalejaMadridSpain

Personalised recommendations