Biologia Plantarum

, 55:757 | Cite as

Cross talk between phytohormones in the regulation of flower induction in Pharbitis nil

  • E. Wilmowicz
  • K. Frankowski
  • P. Glazińska
  • J. Kęsy
  • W. Wojciechowski
  • J. Kopcewicz
Brief Communication


Application of gibberellic acid (GA3) on the cotyledons of 5-d-old Pharbitis nil reversed the inhibitory effect of both abscisic acid (ABA) and ethylene on flowering. Application of GA3 slightly decreased ethylene production and did not affect the endogenous ABA content in the cotyledons during the night. However, it reversed the stimulating effect of ABA on ethylene production.

Additional key words

abscisic acid ethylene gibberellic acid photoperiod 



abscisic acid


gibberellic acid


indole-3-acetic acid


long day plant


short day plant



This research was supported by UMK Grants Program and MNiSW grant N N303 333436.


  1. Abeles, F.B. (ed.): Ethylene in Plant Biology. — Academic Press, New York — London 1973.Google Scholar
  2. Amagasa, T., Suge, H.: The mode of flower inhibiting action of ethylene in Pharbitis nil. — Plant Cell Physiol. 28: 1159–1161, 1987.Google Scholar
  3. Calvo, A.P., Nicolás, C., Nicolás, G., Rodríguez, D.: Evidence of a cross-talk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. — Physiol. Plant. 120: 623–630, 2004.PubMedCrossRefGoogle Scholar
  4. Frankowski, K., Kęsy, J., Wojciechowski, W., Kopcewicz, J.: Light- and IAA-regulated ACC synthase gene (PnACS) from Pharbitis nil and its possible role in IAA-mediated flower inhibition. — J. Plant Physiol. 166: 192–202, 2009.PubMedCrossRefGoogle Scholar
  5. Kęsy, J., Frankowski, K., Wilmowicz, E., Glazińska, P., Wojciechowski, W., Kopcewicz, J.: The possible role of PnACS2 in IAA-mediated flower inhibition in Pharbitis nil. — Plant Growth Regul. 61: 1–10, 2010.CrossRefGoogle Scholar
  6. Kęsy, J., Maciejewska, B., Sowa, M., Szumilak, M., Kawałowski, K., Borzuchowska, M., Kopcewicz, J.: Ethylene and IAA interactions in the inhibition of photoperiodic flower induction of Pharbitis nil. — Plant Growth Regul. 55: 43–50, 2008.CrossRefGoogle Scholar
  7. Kęsy, J., Trzaskalska, A., Galoch, E., Kopcewicz, J.: Inhibitory effect of brassinosteroids on the flowering of the short-day plant Pharbitis nil. — Biol. Plant. 47: 597–600, 2003.CrossRefGoogle Scholar
  8. King, R.W., Moritz, T., Evans, L.T., Junttila, O., Herlt, A.J.: Long-day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. — Plant Physiol. 127: 624–632, 2001.PubMedCrossRefGoogle Scholar
  9. Kulikowska-Gulewska, H., Cymerski, M., Czaplewska, J., Kopcewicz, J.: IAA in the control of photoperiodic flower induction of Pharbitis nil Chois. — Acta Soc. Bot. Pol. 64: 45–50, 1995.Google Scholar
  10. Kulikowska-Gulewska, H., Majewska, M., Kopcewicz, J.: Gibberellins in the control of photoperiodic flower transition in Pharbitis nil. — Physiol. Plant. 108: 202–207, 2000.CrossRefGoogle Scholar
  11. Razem, F.A., Baron, K., Hill, R.D.: Turning on gibberellin and abscisic acid signaling. — Curr. Opin. Plant Biol. 9: 454–459, 2006.PubMedCrossRefGoogle Scholar
  12. Suge, H.: Inhibition of photoperiodic floral induction in Pharbitis nil by ethylene. — Plant Cell Physiol. 13: 1031–1038, 1972.Google Scholar
  13. Vince-Prue, D., Gressel, J.: Pharbitis nil. — In: Halevy, A.H. (ed.): Handbook of Flowering. Pp. 47–81. CRC Press, Boca Raton 1985.Google Scholar
  14. Vine, J.H., Noiton, D., Plummer, J.A., Baleriola-Lucas, C., Mullins, M.G. Simultaneous quantitation of indole-3-acetic acid and abscisic acid in small samples of plant tissue by gas chromatography/mass spectrometry/selected ion monitoring. — Plant Physiol. 85: 419–422, 1987.PubMedCrossRefGoogle Scholar
  15. Weiss, D., Ori, N.: Mechanisms of cross talk between gibberellin and other hormones. — Plant Physiol. 144: 1240–1246, 2007.PubMedCrossRefGoogle Scholar
  16. Wijayanti, L., Fujioka, S., Kobayashi, M., Sakurai, A.: Involvement of abscisic acid and indole-3-acetic acid in the flowering of Pharbitis nil. — J. Plant Growth Regul. 16: 115–119, 1997.CrossRefGoogle Scholar
  17. Wilmowicz, E., Kęsy, J., Kopcewicz, J.: Ethylene and ABA interactions in the regulation of flower induction in Pharbitis nil. — J. Plant Physiol. 165: 1917–28, 2008.PubMedCrossRefGoogle Scholar
  18. Yang, Y-Y, Yamaguchi, I, Takeno-Wada, K, Suzuki, Y, Murofushi, N: Metabolism and translocation of gibberellins in the seedlings of Pharbitis nil. (I) Effect of photoperiod on stem elongation and endogenous gibberellins in cotyledons and their phloem exudates. — Plant Cell 36: 221–227, 1995.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • E. Wilmowicz
    • 1
  • K. Frankowski
    • 1
  • P. Glazińska
    • 1
  • J. Kęsy
    • 1
  • W. Wojciechowski
    • 1
  • J. Kopcewicz
    • 1
  1. 1.Department of Physiology and Molecular Biology of Plants, Institute of General and Molecular BiologyNicolaus Copernicus UniversityToruńPoland

Personalised recommendations