Biologia Plantarum

, 55:731 | Cite as

Morphological and histological changes during the somatic embryogenesis of mangosteen

  • M. Elviana
  • E. R. Rohani
  • I. Ismanizan
  • M. N. Normah
Brief Communication


Induction of somatic embryogenesis in leaf explants from young mangosteen seedlings using different concentrations and combinations of 6-benzylaminopurine (BAP) and thidiazuron (TDZ) was investigated. The best medium inducing the formation of globular structures (40 %) was Murashige and Skoog medium with 0.7 mg dm−3 BAP and 0.7 mg dm−3 TDZ. For their further development, subculturing onto different maturation media was carried out, but these globular structures did not develop futher stages of somatic embryogenesis. However, they developed shoots after 90 d of culture on the original medium. Morphological and histological analyses were performed, and showed that the globular structures resembled closely the undifferentiated structure of the mangosteen seed. We propose that the development of mangosteen somatic embryos does not follow the typical course of somatic embryogenesis, but the course of development that is natural for mangosteen seed, where procambium is the only structure observed and there is no differentiated embryo.

Additional key words

Garcinia mangostana globular embryo seed structure undifferentiated structure 



abscisic acid




indole-3-butyric acid


indole-3-acetic acid


formalin + acetic acid + alcohol


Murashige and Skoog


polyethylene glycol


scanning electron microscope




Woody plant medium



We are grateful to the Malaysian Ministry of Science, Technology and Innovation for funding this project (Grant No. 05-01-02-SF0340). We thank Alena Sanusi for her editorial comments on the paper.


  1. Almeyda, N., Martin, F.W.: Cultivation of neglected tropical fruits with promise 1. The mangosteen (Garcinia mangostana L.). — US Agr. Res. Service South Region 155: 1–18, 1976.Google Scholar
  2. Blazquez, S., Olmos, E., Hernandez, J.E., Fernandez-Garcia, N., Fernandez, J.A., Piqueras, A.: Somatic embryogenesis in saffron (Crocus sativus L.). Histological differentiation and implication of some components of the antioxidant enzymes system. — Plant Cell Tissue Organ Cult. 97: 49–57, 2009.CrossRefGoogle Scholar
  3. Corbineau, F., Come, D.: Experiments on the storage of seeds and seedlings of Symphonia globulifera L.f. (Guttiferae). — Seed Sci. Technol. 14: 585–591, 1986.Google Scholar
  4. Do Nascimento, W.M.O., De Carvalho, J.E.U., Muller, C.H.: Morphological characterization of seeds and seedlings to Rheedia acuminata. — Rev. Bras. Frutic. 24: 555–558, 2002.CrossRefGoogle Scholar
  5. Dudits, D., Gyorgyey, L., Bako, L.: Molecular biology of somatic embryogenesis. — In: Thorpe, T.A. (ed.): In Vitro Embryogenesis in Plants. Pp. 267–308. Kluwer Academic Publishers, Dordrecht — Boston — London 1995.CrossRefGoogle Scholar
  6. Evans, D.E. (ed.): Plant Cell Culture. — Brookes University, Oxford 2003.Google Scholar
  7. Feher, A.: The initiation phase of somatic embryogenesis: what we know and what we don’t. — Acta biol. Szeged 52: 53–56, 2008.Google Scholar
  8. Gairi, A., Rahid, A.: TDZ-induced somatic embryogenesis in non-responsive caryopses of rice using a short treatment with 2.4-D. — Plant Cell Tissue Organ Cult. 76: 29–34, 2003.CrossRefGoogle Scholar
  9. Giridhar, P., Indu, E.P., Ravishankar, G.A., Chandrasekar, A.: Influence of TRIA on somatic embryogenesis in Coffea arabica L. and Coffea canephora P. ex FR. — In Vitro cell. dev. Biol. Plant 40: 200–203, 2004.CrossRefGoogle Scholar
  10. Goh, H.K.L., Rao, A.N., Loh, C.S.: In vitro plantlet formation in mangosteen (Garcinia mangostana L.). — Ann. Bot. 62: 87–93, 1988.Google Scholar
  11. Ha, C.O., Sands, V.E., Soupadmo, E., Jong, K.: Reproductive patterns of selected understorey trees in the Malaysian rainforest: the apomictic species. — Bot. J. Linn. Soc. 97: 317–331, 1988.CrossRefGoogle Scholar
  12. Horn, C.L.: Existence of only one variety of cultivated mangosteen explained by asexually formed ’seed’. — Science 92: 237–238, 1940.PubMedCrossRefGoogle Scholar
  13. Hussain, S.S., Rao, A.Q., Husnain, T., Riazuddin, S.: Cotton somatic embryo morphology affects its conversion to plant. — Biol. Plant. 53: 307–311, 2009.CrossRefGoogle Scholar
  14. Jalil, M., Chee, W.W., Othman, R.Y., Khalid, N.: Morphological examination on somatic embryogenesis of Musa acuminate cv. Mas (AA). — Sci. Hort. 117: 335–340, 2008.CrossRefGoogle Scholar
  15. Kiran Ghanti, S., Sujata, K.G., Srinath Rao, M., Kavi Kishor, P.B.: Direct somatic embryogenesis and plant regeneration from immature explants of chickpea. — Biol. Plant. 54: 121–125, 2010.CrossRefGoogle Scholar
  16. Lim, A.L.: The embryology of Garcinia mangostana L. (Clusiaceae). — Garden Bull. Singapore 37: 93–103, 1984.Google Scholar
  17. Litz, R.E.: Somatic embryogenesis from cultured leaf explants of the tropical tree Euphoria longan Stend. — J. Plant Physiol. 132: 459–466, 1988.Google Scholar
  18. Llyod, G.B., Mc Cown, B.H.: Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. — Proc. Int. Plant Propag. Soc. 30: 421–427, 1980.Google Scholar
  19. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassay with tobacco tissue culture. — Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  20. Murthy, B.N.S., Murch, S.J., Saxena, P.K.: Thidiazuron induced somatic embryogenesis in intact seedlings of peanut (Arachis hypogaea): endogenous growth regulator levels and significance of cotyledons. — Physiol. Plant. 94: 268–276, 1995.CrossRefGoogle Scholar
  21. Nagata, T., Ishida, S., Hasezawa, S., Takahashi, Y.: Genes involved in the dedifferentiation of plant cells. — Int. J. dev. Biol. 38: 321–327, 1994.PubMedGoogle Scholar
  22. Normah, M.N., Nor-Azza, A.B., Aliudin, R.: Factors affecting in vitro shoot proliferation and ex vitro establishment of mangosteen. — Plant Cell Tissue Organ Cult. 43: 291–294, 1995.Google Scholar
  23. Normah, M.N., Rosnah, H., Nor-Azza, A.B.: Multiple shoots and callus formation from seeds of mangosteen (Garcinia mangostana L.) cultured in vitro. — Acta Hort. 292: 87–91, 1992.Google Scholar
  24. Richard, A.J.: Studies in Garcinia, dioecious tropical forest tree: the origin of mangosteen (G. mangostana L.). — Bot. J. Linn. Soc. 103: 301–308, 1990.CrossRefGoogle Scholar
  25. Shekhawat, G.S., Mathur, S., Batra, A.: Role of phytohormones and nitrogen in somatic embryogenesis induction in cell culture derived from leaflets of Azadirachta indicia. — Biol. Plant. 53: 707–710, 2009.CrossRefGoogle Scholar
  26. Sprecher, M.A.: Etude sur la semance et la germination du Garcinia mangostana L. — Rev. Gen. Bot. 31: 513–531, 1919.Google Scholar
  27. Su, W.W., Hwang, W., Kim, S.Y., Sagawa, Y.: Induction of somatic embryogenesis in Azadirachta indica. — Plant Cell Tissue Organ Cult. 50: 91–95, 1997.CrossRefGoogle Scholar
  28. Te-Chato, S., Lim, M.: Plant regeneration of mangosteen via nodular callus formation. — Plant Cell Tissue Organ Cult. 59: 89–93, 1999.CrossRefGoogle Scholar
  29. Te-Chato, S., Lim, M.: Improvement of mangosteen micropropagation through meristematic nodular callus formation from in vitro-derived leaf explants. — Scientia Hort. 86: 291–298, 2000.CrossRefGoogle Scholar
  30. Te-Chato, S., Lim, M., Suranilpong, P.: Embryogenic callus induction in mangosteen (Garcinia mangostana L.). — Songklanakarin J. Sci. Technol. 1: 115–120, 1995.Google Scholar
  31. Thorpe, T.A., Stasolla, C.: Somatic embryogenesis. — In: Bhojwani, S.S., Soh, W.J. (ed.): Current Trends in the Embryology of Angiosperms. Pp. 279–336. Kluwer Academics Publishers, Dordrecht 2001.Google Scholar
  32. Vestal, P.A.: The significance of comparative anatomy in establishing the relationship of the Hypericaceae to the Guttiferae and their allies. — Philippine J. Sci. 64: 199–256, 1937.Google Scholar
  33. Vila, S., Gonzalez, A., Rey, H., Mroginski, L.: Somatic embryogenesis and plant regeneration in Cedrela fissilis. — Biol. Plant. 53: 383–386, 2009.CrossRefGoogle Scholar
  34. Visser, C., Qureshi, J.A., Gill, R., Saxena, P.K.: Morphoregulatory role of thidiazuron. — Plant Physiol. 99: 1704–1797, 1992.PubMedCrossRefGoogle Scholar
  35. Von Arnold, S., Sabala, I., Bozhkov, P., Dyachock, J., Filonova, L.: Developmental pathways of somatic embryogenesis. — Plant Cell Tissue Organ Cult. 69: 233–240, 2002.CrossRefGoogle Scholar
  36. West, M.A.L., Harada, J.J.: Embryogenesis in higher plants: an overview. — Plant Cell 5: 1361–1369, 1993.PubMedCrossRefGoogle Scholar
  37. Zimmerman, J.L.: Somatic embryogenesis: a model for early development in higher plants. — Plant Cell 5: 1411–1423, 1993.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Elviana
    • 1
  • E. R. Rohani
    • 1
  • I. Ismanizan
    • 1
    • 2
  • M. N. Normah
    • 1
    • 2
  1. 1.Institute of Systems BiologyUniversiti Kebangsaan MalaysiaBangi, Selangor Darul EhsanMalaysia
  2. 2.Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangi, Selangor Darul EhsanMalaysia

Personalised recommendations