Biologia Plantarum

, Volume 55, Issue 3, pp 507–521 | Cite as

Arabidopsis Ca2+-dependent protein kinase CPK3 mediates relationship of putative inositol triphosphate receptor with slow-type anion channel

  • A. Cousson
Original Papers


It has been suggested in Arabidopsis thaliana (L.) Heynh. cv. Columbia that, contrary to 30 μM abscisic acid (ABA), 20 μM ABA induces guard cell Ca2+ mobilization through activating phosphoinositide-specific phospholipase C (PI-PLC)-dependent inositol 1,4,5-triphosphate (IP3) production. Here, it was investigated whether Ca2+-dependent protein kinase, CPK3 or CPK6 would mediate ABA-induced stomatal closure downstream of IP3 production. In the knockout cpk3-1 mutant, the PLC inhibitor (U73122) adjusted 20 μM ABA-induced stomatal closure to the extent observed in the knockout cpk6-1 and cpk3-1cpk6-1 mutants and the wild type, whereas, in the wild type, the inhibitor of IP3-induced Ca2+ mobilization, xestospongin C (XeC), adjusted this closure to the extent observed in the cpk3-1 mutant. The Ca2+ buffer, EGTA and XeC positively interacted with the slow anion channel blocker, anthracene-9-carboxylic acid (9-AC) to inhibit 20 μM ABA-induced stomatal closure, which was suppressed in the dexamethasone-inducible AtPLC1 antisense transgene or the knockout cpk3-1, cpk6-1, cpk3-1cpk6-1 and NADPH oxidase atrbohD/F mutants. Discrete concentrations of 9-AC or another slow anion channel blocker (probenecid) negatively interacted with the Ca2+ buffer, BAPTA or the inhibitor of cyclic ADP-ribose-induced Ca2+ mobilization, ruthenium red, to inhibit 30 μM ABAinduced stomatal closure in the wild type but not in the cpk6-1, cpk3-1cpk6-1 and atrbohD/F mutants. Based on so far revealed features of the tested compounds and plant materials, interpretation of the results confirmed that guard cell ABA concentration discriminates between two Ca2+ mediations and outlined that one of them sequentially implicates CPK6, PLC1, a putative IP3 receptor homologue, CPK3, and the slow anion channel, whereas the other one excludes AtPLC1-dependent IP3 production and CPK3.

Additional key words

abscisic acid concentration anion channel blockers Ca2+-dependent protein phosphorylation intracellular Ca2+ modulators phospholipase C stomatal closure 



abscisic acid


Arabidopsis gene identifier number


ADP-ribosyl cyclase


cyclic ADP-ribose


Ca2+-dependent protein kinase


cystic fibrosis transmembrane conductance regulator



GTP-binding protein α-subunit

G protein

GTP-binding protein


inositol 1,4,5-triphosphate


multidrug resistance-associated protein




phosphoinositide-specific phospholipase C




ruthenium red


rapid-type anion channel


slow-type anion channel




xestospongin C


anthracene-9-carboxylic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by an IFCPAR grant. The author gratefully thanks Prof. Chua (The Rockefeller University, New York, USA) for his gift of the dexamethasone-inducible AtPLC1 antisense transgene of A. thaliana and Prof. Schroeder (University of California, La Jolla, USA) for his gift of the cpk3-1, cpk6-1, cpk3-1cpk6-1 and atrbohD/F mutants of A. thaliana.


  1. Aarhus, R., Graeff, R.M., Dickey, D.M., Walseth, T.F., Lee, H.C.: ADP-ribosyl cyclase and CD38 catalyze the synthesis of a calcium-mobilizing metabolite from NADP. — J. biol. Chem. 270: 30327–30333, 1995.PubMedCrossRefGoogle Scholar
  2. Albrecht, V., Weinl, S., Blazevic, D., D’Angelo, C., Batistic, O., Kolukisaoglu, Ü., Bock, R., Schulz, B., Harter, K., Kudla, J.: The calcium sensor CBL1 integrates plant responses to abiotic stresses. — Plant J. 36: 457–470, 2003.PubMedCrossRefGoogle Scholar
  3. Allen, G.J., Chu, S.P., Harrington, C.L., Schumacher, K., Hoffmann, T., Tang, Y.Y., Grill, E., Schroeder, J.I.: A defined range of guard cell oscillation parameters encodes stomatal movements. — Nature 411: 1053–1057, 2001.PubMedCrossRefGoogle Scholar
  4. Allen, G.J., Muir, S.R., Sanders, D.: Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADPribose. — Science 268: 735–737, 1995.PubMedCrossRefGoogle Scholar
  5. Aoyama, T., Chua, N.-H.: A glucocorticoid-mediated transcriptional induction system in transgenic plants. — Plant J. 11: 605–612, 1997.PubMedCrossRefGoogle Scholar
  6. Armstrong, F., Blatt, M.R.: Evidence for K+ channel control in Vicia guard cells coupled by G-proteins to a 7TMS receptor mimetic. — Plant J. 8: 187–198, 1995.CrossRefGoogle Scholar
  7. Assmann, S.M., Schwartz, A.: Synergistic effect of light and fusicoccin on stomatal opening. — Plant Physiol. 98: 1349–1355, 1992.PubMedCrossRefGoogle Scholar
  8. Berridge, M.J.: Inositol triphosphate and calcium signalling. — Nature 361: 315–325, 1993.PubMedCrossRefGoogle Scholar
  9. Blatt, M.R., Armstrong, F.: K+ channels of stomatal guard cells: abscisic acid-evoked control of the outward rectifier mediated by cytoplasmic pH. — Planta 191: 330–341, 1993.CrossRefGoogle Scholar
  10. Burnette, R.N., Gunesekera, B.M., Gillaspy, G.E.: An Arabidopsis inositol 5-phosphatase gain-of-function alters abscisic acid signaling. — Plant Physiol. 132: 1011–1019, 2003.PubMedCrossRefGoogle Scholar
  11. Chen, J.-G., Gao, Y., Jones, A.M.: Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots. — Plant Physiol. 141: 887–897, 2006.PubMedCrossRefGoogle Scholar
  12. Cousson, A.: Pharmacological study of two potential Ca2+ signalling pathways within stomatal closing in response to abscisic acid in Commelina communis L. — Plant Sci. 145:67–74, 1999.CrossRefGoogle Scholar
  13. Cousson, A.: Carbon dioxide and ferricyanide parallel each other to inhibit Commelina stomatal opening in a putative Ca2+-independent fashion. — J. Plant Physiol. 159: 281–291, 2002.CrossRefGoogle Scholar
  14. Cousson, A.: Two potential Ca2+-mobilising processes depend on the abscisic acid concentration and growth temperature in the Arabidopsis stomatal guard cell. — J. Plant Physiol. 160: 493–501, 2003.PubMedCrossRefGoogle Scholar
  15. Cousson, A.: Pharmacological evidence for a putative mediation of cyclic GMP and cytosolic Ca2+ within auxin-induced de novo root formation in the monocot plant Commelina communis (L.). — Plant Sci. 166: 1117–1124, 2004.CrossRefGoogle Scholar
  16. Cousson, A.: Two Ca2+ mobilizing pathways implicated within abscisic acid-induced stomatal closing in Arabidopsis thaliana (L.) Heynh. (Columbia-4 ecotype). — Biol. Plant. 51: 285–291, 2007.CrossRefGoogle Scholar
  17. Cousson, A.: Putative primary involvement of Arabidopsis phosphoinositide-specific phospholipase C1 within abscisic acid-induced stomatal closing. — Biol. Plant. 52: 493–501, 2008.CrossRefGoogle Scholar
  18. Cousson, A.: Involvement of phospholipase C-independent calcium-mediated abscisic acid signalling during Arabidopsis response to drought. — Biol. Plant. 53: 53–62, 2009.CrossRefGoogle Scholar
  19. Cousson, A., Cotelle, V., Vavasseur, A.: Induction of stomatal closure by vanadate or a light/dark transition involves Ca2+-calmodulin-dependent protein phosphorylations. — Plant Physiol. 109: 491–497, 1995.PubMedGoogle Scholar
  20. Cousson, A., Vavasseur, A.: Putative involvement of cytosolic Ca2+ and GTP-binding proteins in cyclic GMP-mediated induction of stomatal opening by auxin in Commelina communis L. — Planta 206: 308–314, 1998a.CrossRefGoogle Scholar
  21. Cousson, A., Vavasseur, A.: Two potential Ca2+-dependent transduction pathways in stomatal closing in response to abscisic acid. — Plant Physiol. Biochem. 36: 257–262, 1998b.CrossRefGoogle Scholar
  22. Davies, W.J., Mansfield, T.A.: Auxins and stomata. — In: Zeiger, E., Farquhar, G.D., Cowan, I.C. (ed.): Stomatal Function. Pp. 293–309. Stanford University Press, Stanford 1987.Google Scholar
  23. De Smet, P., Parys, J.B., Callewaert, G., Weidema, A.F., Hill, E., De Smedt, H., Erneux, C., Sorrentino, V., Missiaen, L.: Xestospongin C is an equally potent inhibitor of the inositol 1,4,5-triphosphate receptor and the endoplasmic reticulum Ca2+ pumps. — Cell Calcium 26: 9–13, 1999.PubMedCrossRefGoogle Scholar
  24. Dolmetsch, R.E., Lewis, R.S., Goodnow, C.C., Healy, J.I.: Differential activation of transcription factors induced by Ca2+ response amplitude and duration. — Nature 386: 855–858, 1997.PubMedCrossRefGoogle Scholar
  25. Forestier, C., Bouteau, F., Leonhardt, N., Vavasseur, A.: Pharmacological properties of slow anion currents in intact guard cells of Arabidopsis. Application of the discontinuous single-electrode voltage-clamp to different species. — Eur J. Physiol. 436: 920–927, 1998.CrossRefGoogle Scholar
  26. Gaedeke, N., Klein, M., Kolukisaoglu, M., Forestier, C., Müller, A., Ansorge, M., Becker, D., Mamnun, Y., Kuchler, K., Schulz, B., Mueller-Roeber, B., Martinoia, E.: The Arabidopsis thaliana ABC transporter AtMRP5 controls root development and stomatal movement. — EMBO J. 20:1875–1887, 2001.PubMedCrossRefGoogle Scholar
  27. Gabriel, S.E., Clarke, L.L., Boucher, R.C., Stutts, M.J.: CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship. — Nature 363: 263–266, 1993.PubMedCrossRefGoogle Scholar
  28. Gafni, J., Munsch, J.A., Lam, T.H., Catlin, M.C., Costa, L.G., Molinski, T.F., Pessah, L.N.: Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-triphosphate receptor. — Neuron 19: 723–733, 1997.PubMedCrossRefGoogle Scholar
  29. Galione, A.: Cyclic ADP-ribose, the ADP-ribosyl cyclase pathway and calcium signalling. — Mol. cell. Endocrinol. 98:125–131, 1994.PubMedCrossRefGoogle Scholar
  30. Galione, A., Lee, H.C., Busa, W.B.: Ca2+-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADPribose. — Science 253: 1143–1146, 1991.PubMedCrossRefGoogle Scholar
  31. Gilroy, S., Read, N.D., Trewavas, A.J.: Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. — Nature 346: 769–771, 1990.PubMedCrossRefGoogle Scholar
  32. Grabov, A., Blatt, M.R.: Parallel control of the inward-rectifier K+ channel by cytosolic free Ca2+ and pH in Vicia guard cells. — Planta 201: 84–95, 1997.CrossRefGoogle Scholar
  33. Grabov, A., Blatt, M.R.: Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. — Proc. nat. Acad. Sci. USA 95: 4778–4783, 1998.PubMedCrossRefGoogle Scholar
  34. Grabov, A., Blatt, M.R.: A steep dependence of inward-rectifying potassium channels on cytosolic free calcium concentration increase evoked by hyperpolarization in guard cells. — Plant Physiol. 119: 277–287, 1999.PubMedCrossRefGoogle Scholar
  35. Grabov, A., Leung, J., Giraudat, J., Blatt, M.R.: Alteration of anion channel kinetics in wild type and abi1-1 transgenic Nicotiana benthamiana guard cells by abscisic acid. — Plant J. 12: 203–213, 1997.PubMedCrossRefGoogle Scholar
  36. Guo, Y., Xiong, L., Song, C.P., Gong, D., Halfter, U., Zhu, J.K.: A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. — Dev. Cell. 3: 233–244, 2002.PubMedCrossRefGoogle Scholar
  37. Hajdukiewicz, P., Svab, Z., Maliga, P.: The small, versatile pPZP family of Agrobacterium vectors for plant transformation. — Plant mol. Biol. 25: 989–994, 1994.PubMedCrossRefGoogle Scholar
  38. Harper, J.F., Breton, G., Harmon, A.: Decoding Ca2+ signals through plant protein kinases. — Annu. Rev. Plant Biol. 55:263–288, 2004.PubMedCrossRefGoogle Scholar
  39. Hirayama, T., Ohto, C., Mizoguchi, T., Shinozaki, K.: A gene encoding a phosphatidylinositol-specific phospholipase C is induced by dehydration and salt stress in Arabidopsis thaliana. — Proc. nat. Acad. Sci. USA 92: 3903–3907, 1995.PubMedCrossRefGoogle Scholar
  40. Howard, M., Grimaldi, J.C., Bazan, J.F., Lund, F.E., Santos-Argumedo, L., Parkhouse, R.M., Walseth, T.F., Lee, H.C.: Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. — Science 262: 1056–1059, 1993.PubMedCrossRefGoogle Scholar
  41. Hunt, L., Mills, L.N., Pical, C., Leckie, C.P., Aitken, F.L., Kopka, J., Mueller-Roeber, B., McAinsh, M.R., Hetherington, A.M., Gray, J.E.: Phospholipase C is required for the control of stomatal aperture by ABA. — Plant J. 34:47–55, 2003.PubMedCrossRefGoogle Scholar
  42. Ishige, F., Takaishi, M., Foster, R., Chua, N-H., Oeda, K.: A G-box motif (GCCACGTGCC) tetramer confers high levels of constitutive expression in dicot and monocot. — Plant J. 18: 443–448, 1999.CrossRefGoogle Scholar
  43. Kinoshita, T., Nishimura, M., Shimazaki, K.-I.: Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean. — Plant Cell 7: 1333–1342, 1995.PubMedCrossRefGoogle Scholar
  44. Klein, M., Perfus-Barbeoch, L., Frelet, A., Gaedeke, N., Reinhardt, D., Mueller-Roeber, B., Martinoia, E., Forestier, C.: The plant multidrug resistance ABC transporter AtMRP5 is involved in guard cell hormonal signalling and water use. — Plant J. 33: 119–129, 2003.PubMedCrossRefGoogle Scholar
  45. Kwak, J.M., Moon, J-H., Murata, Y., Kuchitsu, K., Leonhardt, N., DeLong, A., Schroeder, J.I.: Disruption of a guard cellexpressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis. — Plant Cell 14: 2849–2861, 2002.PubMedCrossRefGoogle Scholar
  46. Kwak, J.M., Mori, I.C., Pei, Z-M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D.G., Schroeder, J.I.: NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. — EMBO J. 22: 2623–2633, 2003.PubMedCrossRefGoogle Scholar
  47. Larsen, P.B., Tai, C.Y., Kochian, L.V., Howell, S.H.: Arabidopsis mutants with increased sensitivity to aluminum. — Plant Physiol. 110: 743–751, 1996.PubMedCrossRefGoogle Scholar
  48. Leckie, C.P., McAinsh, M.R., Allen, G.J., Sanders, D., Hetherington, A.M.: Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. — Proc. nat. Acad. Sci. USA 95: 15837–15842, 1998.PubMedCrossRefGoogle Scholar
  49. Lee, H.C.: Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. — J. biol. Chem. 268:293–299, 1993.PubMedGoogle Scholar
  50. Lee, J.Y., Yoo, B.C., Harmon, A.C.: Kinetic and calcium-binding properties of three calcium-dependent protein kinase isoenzymes from soybean. — Biochem 37: 6801–6809, 1998.CrossRefGoogle Scholar
  51. Lee, K.H., Piao, H.L., Kim, H-Y., Choi, S.M., Jiang, F., Hartung, W., Hwang, I., Kwak, J.M., Lee, I-J., Hwang, I.: Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. — Cell 126:1109–1120, 2006.PubMedCrossRefGoogle Scholar
  52. Lee, Y., Choi, Y.B., Suh, S., Lee, J., Assmann, S.M., Joe, C.O., Kelleher, J.F., Crain, R.C.: Abscisic acid-induced phosphoinositide turnover in guard cell protoplasts of Vicia faba. — Plant Physiol. 110: 987–996, 1996.PubMedGoogle Scholar
  53. Leonhardt, N., Bazin, I., Richaud, P., Marin, E., Vavasseur, A., Forestier, C.: Antibodies to CFTR modulate the turgor pressure of guard cell protoplasts via slow anion channels. — FEBS Lett. 494: 15–18, 2001.PubMedCrossRefGoogle Scholar
  54. Leymarie, J., Lascève, G., Vavasseur, A.: Interaction of stomatal responses to ABA and CO2 in Arabidopsis thaliana. — Aust J. Plant Physiol. 25: 785–791, 1998.CrossRefGoogle Scholar
  55. Marten, I., Zeilinger, C., Redhead, C., Landry, D.W., Al-Awqati, Q., Hedrich, R.: Identification and modulation of a voltage-dependent anion channel in the plasma membrane of guard cells by high-affinity ligands. — EMBO J 11: 3569–3575, 1992.PubMedGoogle Scholar
  56. McAinsh, M.R., Brownlee, C., Hetherington, A.M.: Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. — Nature 343: 186–188, 1990.CrossRefGoogle Scholar
  57. Mori, I.C., Murata, Y., Yang, Y., Munemasa, S., Wang, Y.-F., Andreoli, S., Tiriac, H., Alonso, J.M., Harper, J.F., Ecker, J.R., Kwak, J.M., Schroeder, JI.: CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. — PLoS Biol. 4(10): e327, 2006.PubMedCrossRefGoogle Scholar
  58. Mueller-Roeber, B., Pical, C.: Inositol phospholipid metabolism in Arabidopsis. Characterized and putative isoforms of inositol phospholipid kinase and phosphoinositide-specific phospholipase C. — Plant Physiol. 130: 22–46, 2002.PubMedCrossRefGoogle Scholar
  59. Muir, S.R., Bewell, M.A., Sanders, D., Allen, G.J.: Ligandgated Ca2+ channels and Ca2+ signalling in higher plants. — J. exp. Bot. 48: 589–597, 1997.PubMedCrossRefGoogle Scholar
  60. Pandey, G.K., Cheong, Y.H., Kim, K-N., Grant, J.J., Li, L., Hung, W., D’Angelo, C., Weinl, S., Kudla, J., Luan, S.: The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. — Plant Cell 16: 1912–1924, 2004.PubMedCrossRefGoogle Scholar
  61. Pei, Z.-M., Kuchitsu, K., Ward, J.M., Schwarz, M., Schroeder, J.I.: Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild type and abi1 and abi2 mutants. — Plant Cell 9: 409–423, 1997.PubMedCrossRefGoogle Scholar
  62. Pei, Z.-M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G.J., Grill, E., Schroeder, J.I.: Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. — Nature 406: 731–734, 2000.PubMedCrossRefGoogle Scholar
  63. Pineros, M., Tester, M.: Calcium channels in higher plant cells: selectivity, regulation and pharmacology. — J. exp. Bot. 48: 551–577, 1997.PubMedCrossRefGoogle Scholar
  64. Pratt, S., Shepard, R.L., Kandasamy, R.A., Johnston, P.A., Perry III, W., Dantzig, A.H.: The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. — Mol. Cancer Therapy 4: 855–863, 2005.CrossRefGoogle Scholar
  65. Raschke, K., Shabahang, M., Wolf, R.: The slow and rapid anion conductance in whole guard cells: their voltage-dependent alternation, and the modulation of their activities by abscisic acid and CO2. — Planta 217: 639–650, 2003.PubMedCrossRefGoogle Scholar
  66. Roelfsema, M.R.G., Levchenko, V., Hedrich, R.: ABA depolarizes guard cells in intact plants, through a transient activation of R- and S-type anion channels. — Plant J. 37: 578–588, 2004.PubMedCrossRefGoogle Scholar
  67. Sanchez, J.-P., Chua, N.-H.: Arabidopsis PLC1 is required for secondary responses to abscisic acid signals. — Plant Cell 13: 1143–1154, 2001.PubMedCrossRefGoogle Scholar
  68. Sanchez, J.-P., Duque, P., Chua, N.-H.: ABA activates ADPR cyclase and cADPR induces a subset of ABA-responsive genes in Arabidopsis. — Plant Cell 38: 381–395, 2004.Google Scholar
  69. Sanders, D., Pelloux, J., Brownlee, C., Harper, J.F.: Calcium at the crossroads of signaling. — Plant Cell 14(Suppl.): S401–S417, 2002.PubMedGoogle Scholar
  70. Schmidt, C., Schelle, I., Liao, Y.-J., Schroeder, J.I.: Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events. — Proc. nat. Acad. Sci. USA 92: 9535–9539, 1995.PubMedCrossRefGoogle Scholar
  71. Schroeder, J.I., Hagiwara, D.: Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. — Nature 338: 427–430, 1989.CrossRefGoogle Scholar
  72. Schulz-Lessdorf, B., Lohse, G., Hedrich, R.: GCAC1 recognizes the pH gradient across the plasma membrane: a pH-sensitive and ATP-dependent anion channel links guard cell membrane potential to acid and energy metabolism. — Plant J. 10: 993–1004, 1996.CrossRefGoogle Scholar
  73. Schwartz, A., Ilan, N., Schwarz, M., Scheaffer, J., Assmann, S.M., Schroeder, J.I.: Anion-channel blockers inhibit S-type anion channels and abscisic acid responses in guard cells. — Plant Physiol. 109: 651–658, 1995.PubMedGoogle Scholar
  74. Schwarz, M., Schroeder, J.I.: Abscisic acid maintains S-type anion channel activity in ATP-depleted Vicia faba guard cells. — FEBS Lett. 428: 177–182, 1998.PubMedCrossRefGoogle Scholar
  75. Sethi, J.K., Empson, R.M., Galione, A.: Nicotinamide inhibits cyclic ADP-ribose-mediated calcium signalling in sea urchin eggs. — Biochem J. 319: 613–617, 1996.PubMedGoogle Scholar
  76. Staxen, I., Pical, C., Montgomery, L.T., Gray, J.E., Hetherington, A.M., McAinsh, M.R.: Abscisic acid induces oscillations in guard cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. — Proc. nat. Acad. Sci. USA 96: 1779–1784, 1999.PubMedCrossRefGoogle Scholar
  77. Suh, S.J., Wang, Y.F., Frelet, A., Leonhardt, N., Klein, M., Forestier, C., Mueller-Roeber, B., Cho, M.H., Martinoia, E., Schroeder, J.I.: The ATP binding cassette transporter AtMRP5 modulates anion and calcium channel activities in Arabidopsis guard cells. — J. biol. Chem. 282: 1916–1924, 2007.PubMedCrossRefGoogle Scholar
  78. Thiel, G., MacRobbie, E.A.C., Blatt, M.R.: Membrane transport in stomatal guard cells: the importance of voltage control. — J. Membrane Biol. 126: 1–18, 1992.CrossRefGoogle Scholar
  79. Thompson, A.K., Mostafapour, S.P., Denlinger, L.C., Bleasdale, J.E., Fisher, S.K.: The aminosteroid U-73122 inhibits muscarinic receptor sequestration and phosphoinositide hydrolysis in SK-N-SH neuroblastoma cells. A role for Gp in receptor compartmentation. — J. biol. Chem. 266: 23856–23862, 1991.PubMedGoogle Scholar
  80. Wang, X.-Q., Ullah, H., Jones, A.M., Assmann, S.M.: G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. — Science 292: 2070–2072, 2001.PubMedCrossRefGoogle Scholar
  81. Wu, Y., Kuzma, J., Maréchal, E., Graeff, R., Lee, H.C., Foster, R., Chua, N-H.: Abscisic acid signaling through cyclic ADP-ribose in plants. — Science 278: 2126–2130, 1997.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.CEA, DSV, IBEB, Lab. Echanges Membran et SignalisationSaint-Paul-lez-DuranceFrance
  2. 2.CNRS, UMR, Biol. Veget. et Microbiol. Environ.Saint-Paul-lez-DuranceFrance
  3. 3.Aix-Marseille UniversitéSaint-Paul-lez-DuranceFrance

Personalised recommendations