Advertisement

Biologia Plantarum

, Volume 55, Issue 3, pp 461–468 | Cite as

NaCl tolerance in Lycopersicon pennellii introgression lines: QTL related to physiological responses

  • A. Frary
  • D. Keleş
  • H. Pinar
  • D. Göl
  • S. Doğanlar
Original Papers

Abstract

The growth and ion content of salt sensitive Lycopersicon esculentum Mill. cv. M82 and salt tolerant L. pennellii Correll accession LA716 were examined under both control and stress conditions (150 mM NaCl). L. esculentum grew more vigorously than L. pennellii under optimal conditions, however, L. pennellii was able to maintain its growth better than cultivated tomato when the plants were exposed to salinity. Sodium content of both L. esculentum and L. pennellii increased as a result of NaCl stress. In addition, both species showed reduced potassium and calcium content due to salinity. The physiological traits were also measured in a population of 52 L. pennellii introgression lines grown under both normal and stress conditions. A total of 311 quantitative trait loci (QTL) were identified for the studied traits: plant height, stem diameter, leaf number, leaf and root fresh and dry mass, and sodium, potassium and calcium contents. Some of the loci (124) were identified under both control and stress conditions while 86 QTL were identified only under non-stress conditions and 101 loci were identified only under NaCl stress.

Additional key words

calcium Lycopersicon esculentum potassium salinity sodium tomato 

Abbreviations

IL

introgression line

QTL

quantitative trait loci

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was funded by grants from the Scientific and Technological Research Council of Turkey (TUBITAK project No. TBAG 103T173), the Prime Ministry State Planning Organization of the Republic of Turkey (DPT Project No. 2003K120690) and Izmir Institute of Technology (IYTE 2003-11).

References

  1. Ashraf, M.: Some important physiological selection criteria for salt tolerance in plants. — Flora 199: 361–370, 2004.Google Scholar
  2. Borsani, O., Valpuesta, V., Botella, M.A.: Developing salt tolerant plants in a new century: a molecular biology approach. — Plant Cell Tissue Organ Cult. 73: 101–115, 2003.CrossRefGoogle Scholar
  3. Chapman, H.D., Pratt, P.F.: Methods of Analysis for Soils, Plants and Waters. — University of California, Berkeley 1961.Google Scholar
  4. Cushman, J.C.: Osmoregulation in plants: implications for agriculture. — Amer. Zool. 41: 758–769, 2001.CrossRefGoogle Scholar
  5. Dasgan, H.Y., Aktas, H., Abak, K., Cakmak, I.: Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. — Plant Sci. 163: 695–703, 2002.CrossRefGoogle Scholar
  6. Demidchik, V., Maathuis, F.J.M.: Physiological roles of nonselective cation channels in plants: from salt stress to signaling and development. — New Phytol. 175: 387–404, 2007.PubMedCrossRefGoogle Scholar
  7. Epstein, E.: Mineral Nutrition of Plants: Principles and Perspectives. — John Wiley & Sons, New York 1972.Google Scholar
  8. Eshed, Y., Zamir, D.: An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. — Genetics 141: 1147–1162, 1995.PubMedGoogle Scholar
  9. Foolad, M.R.: Genetic analysis of salt tolerance during vegetative growth in tomato, Lycopersicon esculentum Mill. — Plant Breed. 115: 245–250, 1996.CrossRefGoogle Scholar
  10. Foolad, M.R.: Genetic basis of physiological traits related to salt tolerance in tomato, Lycopersicon esculentum Mill. Plant Breed. 116: 53–58, 1997.CrossRefGoogle Scholar
  11. Foolad, M.R.: Recent advances in genetics of salt tolerance in tomato. — Plant Cell Tissue Organ Cult. 76: 101–119, 2004.CrossRefGoogle Scholar
  12. Frary, A., Gol, D., Keles, D., Okmen, B., Pinar, H., Sigva, H.O., Yemenicioglu, A., Doganlar, S.: Salt tolerance in Solanum pennellii: antioxidant response and related QTL. — BMC Plant Biol. 10: 58–68, 2010.PubMedCrossRefGoogle Scholar
  13. Juan, M., Rivero, R.M., Romero, L., Ruiz, J.M.: Evaluation of some nutritional and biochemical indicators in selected saltresistance tomato cultivars. — Environ. exp. Bot. 54: 193–201, 2005.CrossRefGoogle Scholar
  14. Kalefetoglu, T., Ekmekci, Y.: The effects of drought on plants and tolerance mechanisms. — Gazi Univ. J. Sci. 18: 723–740, 2005.Google Scholar
  15. Maas, E.V.: Salt tolerance of plants. — Appl. Agr. Res. 1: 12–26, 1986.Google Scholar
  16. Maggio, A., De Pascale, S., Angelino, G., Ruggiero, C., Barbieri, G.: Physiological response of tomato to saline irrigation in long-term salinized soils. — Eur. J. Agron. 21: 149–159, 2004.CrossRefGoogle Scholar
  17. Mittova, M., Guy, M., Tal, M., Volokita, M.: Salinity upregulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. — J. exp. Bot. 55: 1105–1113, 2004.PubMedCrossRefGoogle Scholar
  18. Mittova, M., Theodoulou, F.L., Kiddle, G., Gomez, L., Volokita, M., Tal, M., Foyer, C.H., Guy, M.: Coordinate induction of glutathione biosynthesis and glutathionemetabolizing enzymes is correlated with salt tolerance in tomato. — FEBS Lett. 554: 417–421, 2003.PubMedCrossRefGoogle Scholar
  19. Mittova, V., Guy, M., Tal, M., Volokita, M.: Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress:increased activities of antioxidant enzymes in root plastids. — Free Radical Res. 36: 195–202, 2002.CrossRefGoogle Scholar
  20. Munns, R., Tester, M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.PubMedCrossRefGoogle Scholar
  21. Rousseaux, M.C., Jones, C.M., Adams, D., Chetelat, R., Bennett, A., Powell, A.: QTL analysis of antioxidants in tomato using Lycopersicon pennellii introgression lines. — Theor. appl. Genet. 111: 1396–1408, 2005.PubMedCrossRefGoogle Scholar
  22. Shabala, S., Cuin, T.A.: Potassium transport and plant salt tolerance. — Physiol. Plant. 133: 651–669, 2007.CrossRefGoogle Scholar
  23. Shalata, A., Mittova, V., Volokita, M., Guy, M., Tal, M.: Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: the root antioxidative system. — Physiol. Plant. 112:487–494, 2001.PubMedCrossRefGoogle Scholar
  24. Shalata, A., Tal, M.: The effect of salt stress on lipid peroxidation and antioxidants in the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. — Physiol. Plant. 104: 169–174, 1998.CrossRefGoogle Scholar
  25. Tal, M., Shannon, M.C.: Salt tolerance in the wild relatives of the cultivated tomato: responses of Lycopersicon esculentum, L. cheesmanii, L. peruvianum, S. pennellii and F1 hybrids to high salinity. — Aust. J. Plant. Physiol. 10:109–117, 1983.CrossRefGoogle Scholar
  26. Xiong, L., Zhu, J.-K.: Salt tolerance. — In: Somerville, C, Meyerowitz, E. (ed.): The Arabidopsis Book. American Society of Plant Biologists, Rockville 2002.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • A. Frary
    • 1
  • D. Keleş
    • 2
  • H. Pinar
    • 2
  • D. Göl
    • 1
  • S. Doğanlar
    • 1
  1. 1.Department of Molecular Biology and GeneticsIzmir Institute of TechnologyUrlaIzmir, Turkey
  2. 2.Alata Horticultural Research InstituteErdemliMersin, Turkey

Personalised recommendations