Biologia Plantarum

, Volume 55, Issue 2, pp 312–316 | Cite as

Methylglyoxal destroys Agrobacterium tumefaciens crown gall tumours in Nicotiana tabacum without any adverse effect on the host plant

  • A. Ray
  • C. Roy
  • S. Ray
  • M. Mazumder
  • D. N. Sengupta
  • M. Ray


Methylglyoxal (MG) is a highly reactive α-oxoaldehyde, demonstrating anticancer effect on plant neoplastic tumours. In in vivo studies it was observed that MG destroyed crown gall tumours in Nicotiana tabacum produced by Agrobacterium tumefaciens, without any adverse effect on the host. The efficacy of MG in comparison to other anticancer drugs viz. cisplatin and ellagic acid in the treatment of crown gall was investigated. A slight degeneration of galls was noted in plants treated with cisplatin and ellagic acid but the plants died subsequently. With MG however, crown galls were completely cured and the plants completed their usual life cycle by flowering and producing seeds. MG inhibited the respiration of crown gall calluses suggesting that energy depletion resulted in tumour destruction.

Additional key words

anticancer drug cisplatin ellagic acid pyruvic acid respiration 





Murashige and Skoog


1-naphthalene acetic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge the financial support of Department of Science and Technology, Government of India.


  1. Aggarwal, B.B., Shishodia, S.: Molecular targets of dietary agents for prevention and therapy of cancer. — Biochem. Pharmacol. 71: 1397–1421, 2006.PubMedCrossRefGoogle Scholar
  2. Babula, P., Šupálková, V., Adam, V., Havel, L., Beklová, M., Sladký, Z., Kizek, R.: An influence of cisplatin on the cell culture of Nicotiana tabacum BY-2. — Plant Soil Environ. 53: 350–354, 2007.Google Scholar
  3. Baker, C.J., Mock, N.M.: An improved method for monitoring cell death in cell suspension and leaf disc assays using Evans blue. — Plant Cell Tissue Organ Cult. 39: 7–12, 1994.CrossRefGoogle Scholar
  4. Biswas, S., Ray, M., Misra, S., Dutta, D.P., Ray, S.: Selective inhibition of mitochondrial respiration and glycolysis in human leukaemic leucocytes by methylglyoxal. — Biochem. J. 323: 343–348, 1997.PubMedGoogle Scholar
  5. Bourgin, J.P., Chupeau, Y., Missonier, C.: Plant regeneration from mesophyll protoplasts of several Nicotiana species. — Physiol. Plant. 45: 288–292, 1979.CrossRefGoogle Scholar
  6. Braun, A.C.: Studies on the origin of the crown gall tumor cell. — Brookhaven Symp. Biol. 6: 115–127, 1954.Google Scholar
  7. Cassidy, J., Bissett, D., Obe, R.A.J.S.: Cisplatin and its Derivatives. — Oxford University Press, New Delhi 2002.Google Scholar
  8. Drummond, M.: Crown gall disease. — Nature 281: 343–347, 1979.CrossRefGoogle Scholar
  9. Dusbábková, J., Nečásek, J., Pešina, K.: Crown gall tumors in Centaurium. — Biol. Plant. 27: 465–467, 1985.CrossRefGoogle Scholar
  10. Edderkaoui, M., Odinokova, I., Ohno, I., Gukovsky, I., Go, V.L., Pandol, S.J., Gukovskaya, A.S.: Ellagic acid induces apoptosis through inhibition of nuclear factor kappa B in pancreatic cancer cells. — World J. Gastroenterol. 23: 3672–3680, 2008.CrossRefGoogle Scholar
  11. Godoy-Hernandez, G., Vazquez-Flota, F.A.: Growth measurements: estimation of cell division and cell expansion. — In: Loyola-Vargas, V.M., Vázquez-Flota, F. (ed.): Plant Cell Culture Protocols. Pp. 51–58. Humana Press, Totowa 2006.Google Scholar
  12. Johnson, R., Guderian, R.H., Eden, F., Chilton, M.D., Gordon, M.P., Nester, E.W.: Detection and quantitation of octopine in normal plant tissue and in crown gall tumors. — Proc. nat. Acad. Sci. USA 71: 536–539, 1974.PubMedCrossRefGoogle Scholar
  13. Kalapos, M.P: Methylglyoxal and glucose metabolism: a historical perspective and future avenues for research. — Drug Metabol. Drug Interact. 23: 69–91, 2008.PubMedGoogle Scholar
  14. Karami, O., Esna-Ashari, M., Karimikurdistani, G., Aghavaisi, B.: Agrobacterium-mediated genetic transformation of plants: the role of host. — Biol. Plant. 53: 201–212, 2009.CrossRefGoogle Scholar
  15. Lieber, M.M.: Role of cohesive fields in generating bud/plantlet developments from plant neoplasms. — Frontier Perspectives 4: 35–41, 1995.Google Scholar
  16. Lundeen, C.V.: Plant cell transformation with bacteria. — Methods Enzymol. 31: 553–557, 1974.PubMedCrossRefGoogle Scholar
  17. Moreno-Sánchez., R, Rodríguez-Enríquez S., Marín-Hernández A, Saavedra, E.: Energy metabolism in tumor cells. — FEBS J. 274: 1393–1418, 2007.PubMedCrossRefGoogle Scholar
  18. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue culture. — Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  19. Paulus, C., Köllner, B., Jacobsen, H.J.: Physiological and biochemical characterization of glyoxalase I, a general marker for cell proliferation, from a soybean cell suspension. — Planta 189: 561–566, 1993.PubMedCrossRefGoogle Scholar
  20. Popielarska, M., Slesak, H., Goralski, G.: Histological and SEM studies on organogenesis in endosperm-derived callus of kiwifruit. — Acta biol. cracoviensia Ser. bot. 48: 97–104, 2006.Google Scholar
  21. Pradel, K., Ulrich, C., Cruz, S., Oparka, K.: Symplastic continuity in Agrobacterium tumefaciens-induced tumours. — J. exp. Bot. 50: 183–192, 1999.CrossRefGoogle Scholar
  22. Ray, S., Dutta, S., Halder, J., Ray, M.: Inhibition of electron flow through complex of the mitochondrial respiratory chain of Ehrlich ascites carcinoma cells by methylglyoxal. — Biochem. J. 303: 69–72, 1994.PubMedGoogle Scholar
  23. Roy, K., De, S., Ray, M., Ray, S.: Methylglyoxal can completely replace the requirement of kinetin to induce differentiation of plantlets from some plant calluses. — Plant Growth Regul. 44: 71–80, 2004.CrossRefGoogle Scholar
  24. Seong, E.S., Ghimire, B.K., Goh, E.J., Lim, J.D., Kim, M.J., Chung, I.M., Yu, C.Y.: Overexpression of the γ-TMT gene in Codonopsis lanceolata. — Biol. Plant. 53:631–636, 2009.CrossRefGoogle Scholar
  25. Smits, M.M., Johnson, M.A.: Methylgloxal: enzyme distributions relative to its presence in Douglas-fir needles and absence in Douglas-fir needle callus. — Arch. Biochem. Biophys. 208: 431–439, 1981.PubMedCrossRefGoogle Scholar
  26. Talukdar, D., Ray, S., Ray, M., Das, S.: A brief critical overview of the biological effects of methylglyoxal and further evaluation of a methylglyoxal-based anticancer formulation in treating cancer patients. — Drug Metabol. Drug Interac. 23: 175–210, 2008.Google Scholar
  27. Yadav, S.K., Singla-Pareek, S.L., Sopory, S.K.: An overview on the role of methylglyoxal and glyoxalases in plants. — Drug Metabol. Drug Interact. 23: 51–68, 2008.PubMedGoogle Scholar
  28. Zu, X.L., Guppy, M.: Cancer metabolism: facts, fantasy, and fiction. — Biochem. biophys. Res. Commun. 313: 459–465, 2004.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • A. Ray
    • 1
  • C. Roy
    • 2
  • S. Ray
    • 3
  • M. Mazumder
    • 1
  • D. N. Sengupta
    • 2
  • M. Ray
    • 1
  1. 1.Department of Biological ChemistryIndian Association for the Cultivation of ScienceKolkataIndia
  2. 2.Department of BotanyBose InstituteKolkataIndia
  3. 3.KolkataIndia

Personalised recommendations