Advertisement

Biologia Plantarum

, Volume 55, Issue 1, pp 75–82 | Cite as

Characterization of Mg-dechelating substance in senescent and pre-senescent Arabidopsis thaliana leaves

  • A. M. Büchert
  • P. M. Civello
  • G. A. Martínez
Article

Abstract

The removal of Mg2+ is an important step in the chlorophyll degradation pathway and extracts from senescent and presenescent Arabidopsis thaliana leaves were analyzed for Mg-dechelatase activity, using chlorophyllin, an artificial derivative of the natural substrate, chlorophyllide. The optimum temperature and pH for this reaction were determined to be at approximately 50 °C and 7.2, respectively. Mg-dechelatase activity was enhanced by addition of EDTA and inhibited by MgCl2, HgCl2 and reduced glutathione, indicating phenomenons such as retroinhibition by reaction products and dependence on the redox state of the mixture. Size exclusion chromatography was performed on Arabidopsis leaf extracts, and Mg-dechelatase activity was found in the fraction corresponding to molecular mass of about 42 kDa, which indicates that the Mg-dechelating compound in Arabidopsis is considerably larger than in other systems. During dark-induced senescence, the activity increased over time until reaching a maximum at day 4, and then decreased. The addition of plant growth regulators indicated that the accumulation of Mg-dechelatase was activated by ethylene and delayed by 6-benzylaminopurine.

Additional key words

chlorophyll degradation chlorophyllin pheophorbide 

Abbreviations

6-BAP

6-benzylaminopurine

Chl

chlorophyll

Chlide

chlorophyllide a

Chlin

Mg-chlorophyllin a

EDTA

ethylenediaminetetraacetic acid

MDS

Mg-dechelating substance

Pheide

pheophorbide a

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Dr. P. Arruda for his generous contribution of the MBP-CORI1 (AtCLH1) recombinant fusion employed for obtaining chlorophyllide a through chlorophyllase assays. This work was based on funding from Agencia Nacional de Promoción CientÍfica y Tecnológica (Argentina) PICT 25283.

References

  1. Benedetti, C.E., Arruda, P.: Altering the expression of the chlorophyllase gene ATHCOR1 in transgenic Arabidopsis caused changes in the chlorophyll-to-chlorophyllide ratio. — Plant Physiol. 128: 1255–1263, 2002.CrossRefPubMedGoogle Scholar
  2. Bertani, G.: Studies on lysogenesis I.: The mode of phage liberation by lysogenic Escherichia coli. — J. Bacteriol. 62: 293, 1951.PubMedGoogle Scholar
  3. Cho, C., Chung, E., Kim, K., Soh, H., Jeong, Y., Lee, S., Lee, Y., Kim, K., Chung, Y., Lee, J.: Plasma membrane localization of soybean matrix metalloproteinase differentially induced by senescence and abiotic stress. — Biol. Plant. 53: 461–467, 2009.CrossRefGoogle Scholar
  4. Costa, M.L., Civello, P.M., Chaves, A.R., MartÍnez, G.A.: Characterization of Mg-dechelatase activity obtained from Fragaria × ananassa fruit. — Plant Physiol. Biochem. 40: 111–118, 2002.CrossRefGoogle Scholar
  5. Costa, M.L., Civello, P.M., Chaves, A.R., MartÍnez, G.A.: Effect of ethephon and 6-benzylaminopurine on chlorophyll degrading enzymes and a peroxidase-linked chlorophyll bleaching during post-harvest senescence of broccoli (Brassica oleracea L.) at 20 °C. — Postharvest Biol. Technol. 35: 191–199, 2005.CrossRefGoogle Scholar
  6. Costa, M.L., Civello, P.M., Chaves, A.R., MartÍnez, G.A.: Hot air treatment decreases chlorophyll catabolism during postharvest senescence of broccoli (Brassica oleracea L. var. italica) heads. — J. Sci. Food Agr. 86: 1125–1131, 2006a.CrossRefGoogle Scholar
  7. Costa, M.L., Vicente, A.R., Civello, P.M., Chaves, A.R., MartÍnez, G.A.: UV-C treatment delays postharvest senescence in broccoli florets. — Postharvest Biol. Technol. 39: 204–210, 2006b.CrossRefGoogle Scholar
  8. Hörtensteiner, S.: Chlorophyll degradation during senescence. — Annu. Rev. Plant Biol. 57: 55–77, 2006.CrossRefPubMedGoogle Scholar
  9. Inskeep, W.P., Bloom, P.R.: Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80 % acetone. — Plant Physiol. 77: 483–485, 1985.CrossRefPubMedGoogle Scholar
  10. Li, J.R., Yu, K., Wei, J.R., Ma, Q., Wang, B.Q., Yu, D.: Gibberellin retards chlorophyll degradation during senescence of Paris polyphylla. — Biol. Plant. 54: 395–399, 2010.CrossRefGoogle Scholar
  11. Matile, P., Hörtensteiner, S., Thomas, H.: Chlorophyll degradation. — Annu. Rev. Plant Biol. 50: 67–95, 1999.CrossRefGoogle Scholar
  12. Matile, P., Hörtensteiner, S., Thomas, H., Kräutler, B.: Chlorophyll breakdown in senescent leaves. — Plant Physiol. 112: 1403–1409, 1996.PubMedGoogle Scholar
  13. Park, S.Y., Yu, J.W., Park, J.S., Li, J., Yoo, S.C., Lee, N.Y., Lee, S.K., Jeong, S.W., Hak, S.S., Koh, H.J., Jeon, J.S., Park, Y.I., Paek, N.C.: The senescence-induced staygreen protein regulates chlorophyll degradation. — Plant Cell 19: 1649–1664, 2007.CrossRefPubMedGoogle Scholar
  14. Procházková, A., Wilhelmová, N.: Antioxidant protection during ageing and senescence in transgenic tobacco with enhanced activity of cytokinin oxidase/dehydrogenase. — Biol. Plant. 53: 691–696, 2009.CrossRefGoogle Scholar
  15. Pružinská, A., Tanner, G., Anders, I., Roca, M., Hörtensteiner, S.: Chlorophyll breakdown: pheophorbide a oxygenase is a Rieske-type iron-sulfur protein, encoded by the accelerated cell death 1 gene. — Proc. nat. Acad. Sci. USA 100: 15259–15264, 2003.CrossRefPubMedGoogle Scholar
  16. Rodoni, S., Nakayama, K., Anderl, M., Kräutler, B., Moser, D., Thomas, H., Matile, P., Hörtensteiner, S.: Chlorophyll breakdown in senescent chloroplasts: cleavage of pheophorbide a in two enzymic steps. — Plant Physiol. 115: 669–676, 1997.CrossRefPubMedGoogle Scholar
  17. Schelbert, S., Aubry, S., Burla, B., Agne, B., Kessler, F., Krupinska, K., Hortensteiner, S.: Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis. — Plant Cell 21: 767–785, 2009.CrossRefPubMedGoogle Scholar
  18. Schenk, N., Schelbert, S., Kanwischer, M., Goldschmidt, E.E., Dörmann, P., Hörtensteiner, S.: The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescencerelated chlorophyll breakdown in Arabidopsis thaliana. — FEBS Lett. 581: 5517–5525, 2007.CrossRefPubMedGoogle Scholar
  19. Shioi, Y., Tomita, N., Tsuchiya, T., Takamiya, K.I.: Conversion of chlorophyllide to pheophorbide by Mg-dechelating substance in extracts of Chenopodium album. — Plant Physiol. Biochem. 34: 41–47, 1996.Google Scholar
  20. Suzuki, T., Kunieda, T., Murai, F., Morioka, S., Shioi, Y.: Mg-dechelation activity in radish cotyledons with artificial and native substrates, Mg-chlorophyllin a and chlorophyllide a. — Plant Physiol. Biochem. 43: 459–464, 2005.CrossRefPubMedGoogle Scholar
  21. Suzuki, T., Shioi, Y.: Re-examination of Mg-dechelation reaction in the degradation of chlorophylls using chlorophyllin a as a substrate. — Photosynth. Res. 74: 217–223, 2002.CrossRefPubMedGoogle Scholar
  22. Tanaka, A., Tanaka, R.: Chlorophyll metabolism. — Curr. Opin. Plant Biol. 9: 248–255, 2006.CrossRefPubMedGoogle Scholar
  23. Tang, L., Okazawa, A., Fukusaki, E., Kobayashi, A.: Removal of magnesium by Mg-dechelatase is a major step in the chlorophyll-degrading pathway in Ginkgo biloba in the process of autumnal tints. — Z. Naturforsch. Sect. C 55: 923–926, 2000.Google Scholar
  24. Tsuchiya, T., Ohta, H., Okawa, K., Iwamatsu, A., Shimada, H., Masuda, T., Takamiya, K.I.: Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. — Proc. nat. Acad. Sci. USA 96: 15362–15367, 1999.CrossRefPubMedGoogle Scholar
  25. Vicente, A.R., Costa, L., Covatta, F., MartÍnez, G.A., Chaves, A.R., Civello, P.M., Sozzi, G.O.: Physiological changes in boysenberry fruit during growth and ripening. — J. hort. Sci. Biotechnol. 81: 525–531, 2006.Google Scholar
  26. Vicentini, F., Iten, F., Matile, P.: Development of an assay for Mg-dechelatase of oilseed rape cotyledons, using chlorophyllin as the substrate. — Physiol. Plant. 94: 57–63, 1995.CrossRefGoogle Scholar
  27. Wüthrich, K.L., Bovet, L., Hunziker, P.E., Donnison, I.S., Hörtensteiner, S.: Molecular cloning, functional expression and characterisation of RCC reductase involved in chlorophyll catabolism. — Plant J. 21: 189–198, 2000.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • A. M. Büchert
    • 1
  • P. M. Civello
    • 1
    • 2
  • G. A. Martínez
    • 1
    • 2
  1. 1.Instituto de Investigaciones BiotecnológicasCONICET-UNSAMChascomúsArgentina
  2. 2.Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations