Biologia Plantarum

, Volume 55, Issue 1, pp 27–34 | Cite as

Silencing of the LeSGR1 gene in tomato inhibits chlorophyll degradation and exhibits a stay-green phenotype

  • Z. -L. Hu
  • L. Deng
  • B. Yan
  • Y. Pan
  • M. Luo
  • X. -Q. Chen
  • T. -Z. Hu
  • G. -P. Chen


The full-length cDNA of LeSGR1 was cloned from tomato by RT-PCR and RACE. The cDNA encoded a protein of 272 amino acid residues and was deposited in GenBank (accession No. DQ100158). Northern analysis suggests that LeSGR1 gene specifically expresses in senescent leaves and mature fruits of tomatoes. Desiccation and flooding induce the expression of LeSGR1 in tomato leaves and stems. Both in ethylene-insensitive mutants (Nr) and ripening inhibitor mutants (rin), the expression of LeSGR1 is markedly decreased compared with that in the wild type. Alignment of the nucleotide sequence of SGR1 cloned from the tomato green flesh (gf) mutant with that from the wild type tomato shows a single nucleotide change leading to an amino acid substitution in gf mutant. Furthermore, LeSGR1 gene silencing by RNA interference results in inhibited chlorophyll degradation similar to the phenotype in gf mutant. Thus, we conclude that LeSGR1 is crucial to chlorophyll degradation and the mutation of SGR1 protein might be responsible for gf tomato properties.

Additional key words

desiccation flooding Lycopersicon esculentum mutants senescence 



Ailsa Craig






days post anthesis


green flesh


immature green


mature green


mature leaf


never ripe


open reading frame


rapid amplification of cDNA ends


ripening inhibitor


reverse transcriptase polymerase chain reaction


senescent leaf


untranslated region


young leaf


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (No.30771464 and No.30871709.) and by China Postdoctoral Science Foundation (No.20060390677 and No.20070420717). We thank Prof. J.R. Botella (University of Queensland) for critical reading of the manuscript.


  1. Akhtar, M.S., Goldschmidt, E.E., John, I., Rodoni, S., Matile, P., Grierson, D.: Altered patterns of senescence and ripening in gf, a stay-green mutant of tomato (Lycopersicon esculentum Mill). — J. exp. Bot. 50: 1115–1122, 1999.CrossRefGoogle Scholar
  2. Ambler, J.R., Morgan, P.W., Jordan, W.R.: Genetic regulation of senescence in a tropical grass. — In: Thomson, W.W. (ed.): Plant Senescence: Its Biochemistry and Physiology. Pp. 43–53. Amer. Soc. Plant Physiol., Rockville 1987.Google Scholar
  3. Armstead, I., Donnison, I., Aubry, S., Harper, J., Hörtensteiner, S., James, C., Mani, J., Moffet, M., Ougham, H., Roberts, L., Thomas, A., Weeden, N., Thomas, H., King I.: Cross-species identification of Mendel’s I locus. — Science 315: 73, 2007.CrossRefPubMedGoogle Scholar
  4. Becker, E.W.: Measurement of algal growth. — In: Becker, E.W. (ed.): Microalgae Biotechnology and Microbiology. Pp. 56–62. Cambridge University Press, Cambridge 1994.Google Scholar
  5. Bird, C.R., Smith, C.J.S., Ray, J.A., Moureau, P., Bevan, M.W., Bird, A.S., Hughes, S., Morris, P.C., Grierson, D., Schuch, W.: The tomato polygalacturonase gene and ripening-specific expression in transgenic plants. — Plant mol. Biol. 11: 651–662, 1988.CrossRefGoogle Scholar
  6. Blom, N., Gammeltoft, S., Brunak, S.: Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. — J. mol. Biol. 294: 1351–1362, 1999.CrossRefPubMedGoogle Scholar
  7. Cha, K.W., Lee, Y.J., Koh, H.J., Lee, B.M., Nam, Y.W., Paek, N.C.: Isolation, characterization, and mapping of the stay green mutant in rice. — Theor. appl. Genet. 104: 526–532, 2002.CrossRefPubMedGoogle Scholar
  8. Chen, G.P., Wilson, I.D., Kim, S.H., Grierson, D.: Inhibiting expression of a tomato ripening-associated membrane protein increases organic acid and reduces sugar level of fruits. — Planta 212: 799–807, 2001.CrossRefPubMedGoogle Scholar
  9. Chen, G.P., Hackett, R., Walker, D., Taylor, A., Lin, Z.F., Grierson, D.: Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. — Plant Physiol. 136: 2641–2651, 2004.CrossRefPubMedGoogle Scholar
  10. Cheung, A.Y., McNellis, T., Piekos, B.: Maintenance of chloroplast components during chromoplast differentiation in the tomato mutant green flesh. — Plant Physiol. 101: 1223–1229, 1993.PubMedGoogle Scholar
  11. Crafts-Brandner, S.J., Below, F.E., Harper, J.E., Hageman, R.H.: Differential senescence of maize hybrids following ear removal: I. whole plant. — Plant Physiol. 74: 360–367, 1984.CrossRefPubMedGoogle Scholar
  12. Guiamét, J.J., Teeri, J.A., Noodén, L.D.: Effects of nuclear and cytoplasmic genes altering chlorophyll loss on gas exchange during monocarpic senescence in soybean. — Plant Cell Physiol. 31: 1123–1130, 1990.Google Scholar
  13. Hardwick, R.C.: Leaf abscission in varieties of Phaseolus vulgaris L. and Glycine max (L.) Merrill — a correlation with propensity to produce adventitious roots. — J. exp. Bot. 30: 795–804, 1979.CrossRefGoogle Scholar
  14. Hilditch, P., Thomas, H., Rogers, L.: Leaf senescence in a non- yellowing mutant of Festuca pratensis: photosynthesis and photosynthetic electron transport. — Planta 167: 146–151, 1986.CrossRefGoogle Scholar
  15. Hörtensteiner, S.: Chlorophyll degradation during senescence. — Annu. Rev. Plant Biol. 58: 55–77, 2006.CrossRefGoogle Scholar
  16. Hurng, W.P., Lur, H.S., Liao, C.K., Kao, C.H.: Role of abscisic acid, ethylene and polyamines in flooding-promoted senescence of tobacco leaves. — J. Plant Physiol. 143: 102–105, 1994.Google Scholar
  17. Jiang, H.W., Li, M.R., Liang, N.T., Yan, H.B., Wei, Y.B., Xu, X.L., Liu, J., Xu, Z.F., Chen, F., Wu, G.J.: Molecular cloning and function analysis of the stay green gene in rice. — Plant J. 52: 197–209, 2007.CrossRefPubMedGoogle Scholar
  18. Kawakami, N., Watanabe, A.: Translatable mRNAs for chloroplast-targeted proteins in detached radish cotyledons during senescence in darkness. — Plant Cell Physiol. 34: 697–704, 1993.Google Scholar
  19. Kerr, E.A.: Green flesh, gf. — Tomato Genet. Coop. Rep. 6: 17, 1956.Google Scholar
  20. Kerr, E.A.: Linkage relations of gf. — Tomato Genet. Coop. Rep. 8: 21, 1957.Google Scholar
  21. Li, J.R., Yu, K., Wei, J.R., Ma, Q., Wang, B.Q., Yu, D.: Gibberellin retards chlorophyll degradation during senescence of Paris polyphylla. — Biol. Plant. 54: 395–399, 2010.CrossRefGoogle Scholar
  22. Mondal, W.A., Choudhuri, M.A.: Comparison of phosphorus mobilization during monocarpic senescence in rice cultivars with sequential and non-sequential leaf senescence. — Physiol. Plant. 65: 221–227, 1985.CrossRefGoogle Scholar
  23. Park, S.Y., Yu, J.W., Park, J.S., Li, J., Yoo, S.C., Lee, N.Y., Lee, S.K., Jeong, S.W., Seo, H.S., Koh, H.J., Jeon, J.S., Park, Y.I., Paek, N.C.: The senescence-induced stay green protein regulates chlorophyll degradation. — Plant Cell 19: 1649–64, 2007.CrossRefPubMedGoogle Scholar
  24. Pic, E., De la Serve, B.T., Tardieu, F., Turc, O.: Leaf senescence induced by mild water deficit follows the same sequence of macroscopic, biochemical, and molecular events as monocarpic senescence in pea. — Plant Physiol. 128: 236–246, 2002.CrossRefPubMedGoogle Scholar
  25. Sanchez, A.C., Subudhi, P.K., Rosenow, D.T., Nguyen, H.T.: Mapping GTLs associated with drought-resistance in sorghrum (Sorghrum bicolor L. Moenth). — Plant mol. Biol. 48: 713–726, 2002.CrossRefPubMedGoogle Scholar
  26. Shen, C.G. (ed.): [Physiology and Molecular Biology of Plant Senescence.] — China Agriculture Press, Beijing 2001. [In Chin.]Google Scholar
  27. Smith, P.G.: Inheritance of brown and green mature fruit color in peppers. — J. Hered. 41: 138–140, 1950.PubMedGoogle Scholar
  28. Thomas, H.: Sid: a Mendelian locus controlling thylakoid membrane disassembly in senescing leaves of Festuca pratensis. — Theor. appl. Genet. 73: 551–555, 1987.CrossRefGoogle Scholar
  29. Thomas, H., Howarth, C.J.: Five ways to stay green. — J. exp. Bot. 51: 329–337, 2000.CrossRefPubMedGoogle Scholar
  30. Thomas, H., Morgan, W.G., Thomas, A.M., Ougham, H.J.: Expression of the stay-green character introgressed into Lolium temulentum Ceres from a senescence mutant of Festuca pratensis. — Theor. appl. Genet. 99: 92–99, 1999.CrossRefGoogle Scholar
  31. Thomas, H., Smart, C.M.: Crops that stay green. — Ann. appl. Biol. 123: 193–219, 1993.CrossRefGoogle Scholar
  32. Thomas, H., Stoddart, J.L.: Separation of chlorophyll degradation from other senescence processes in leaves of a mutant genotype of meadow fescue (Festuca pratensis L.). — Plant Physiol. 56: 438–441, 1975.CrossRefPubMedGoogle Scholar
  33. Vietor, D.M., Cralle, H.T., Miller, F.R.: Partitioning of 14C-photosynthate and biomass in relation to senescence characteristics of sorghum. — Crop Sci. 29: 1049–1053, 1989.CrossRefGoogle Scholar
  34. Wang, H.Y., Hu, Y.H., Liu, Y., Zhou, Y.T., Wang, M.L., Zhao, Y.: Suppression subtractive hybridization identifies differentially expressed genes in Brassica napus chlorophyll- reduced mutant. — Biol. Plant. 52: 486–492, 2008.CrossRefGoogle Scholar
  35. Wittenbach, V.A.: Induced senescence of intact wheat seedlings and its reversibility. — Plant Physiol. 59: 1039–1042, 1997.CrossRefGoogle Scholar
  36. Woodworth, C.M.: Inheritance of cotyledon seed-coat hilum and pubescence colors in soybeans. — Genetics 6: 487–553, 1921.PubMedGoogle Scholar
  37. Yoshida, Y.: Nuclear control of chloroplast activity in Elodea leaf cells. — Protoplasma 54: 476–492, 1961.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Z. -L. Hu
    • 1
  • L. Deng
    • 1
  • B. Yan
    • 1
  • Y. Pan
    • 1
  • M. Luo
    • 1
  • X. -Q. Chen
    • 2
  • T. -Z. Hu
    • 1
  • G. -P. Chen
    • 1
  1. 1.Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering CollegeChongqing UniversityChongqingP.R. China
  2. 2.Beijing Agro-Biotechnology Research CenterBeijingP.R. China

Personalised recommendations