Biologia Plantarum

, Volume 54, Issue 4, pp 785–788 | Cite as

The effects of brassinosteroids on photosynthetic parameters in leaves of two field-grown maize inbred lines and their F1 hybrid

  • M. Kočová
  • O. Rothová
  • D. Holá
  • M. Kvasnica
  • L. Kohout
Brief Communication


The effect of foliar spray with 10−12 M aqueous solutions of 24-epibrassinolide or a synthetic androstane analogue of castasterone on the activity of photosystem (PS) 1, the Hill reaction activity, the content of photosynthetic pigments and the specific leaf mass was examined for three different leaves developed after brassinosteroid (BR) treatment in two inbred lines of field-grown maize and their F1 hybrid. The brassinosteroids significantly affected neither the efficiency of photosynthetic electron transport, nor the content of chlorophylls or carotenoids.

Additional key words

carotenoids chlorophylls 24-epibrassinolide heterosis Hill reaction photosystem 1 











days after sowing


2,6-dichlorophenol indophenol


N,N-dimethyl formamide


dimethyl sulfoxide




Hill reaction activity


photosynthetically active radiation




specific leaf mass


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to Dr. Jaroslav Poruba from the CEZEA Breeding Station in Čejč, Czech Republic, for the supply of maize kernels, and to our students Lenka Fridrichová and Zuzana Novosadová for their help with the measurements of photosynthetic parameters. This study was supported by grants No. KJB601110611 of the Grant Agency of the Academy of Sciences of the Czech Republic, No. MSM0021620858 from the Ministry of Education, Youth and Sports of the Czech Republic, and IOCB research project Z4 055 0506.


  1. Ahmadzadeh, A., Lee, E.A., Tollenaar, M.: Heterosis for leaf CO2 exchange rate during the grain-filling period in maize. — Crop Sci. 44: 2095–2100, 2004.CrossRefGoogle Scholar
  2. Ali, B., Hasan, S.A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., Ahmad, A.: A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). — Environ. exp. Bot. 62: 153–159, 2008a.CrossRefGoogle Scholar
  3. Ali, B., Hayat, S., Fariduddin, Q., Ahmad, A.: 24-epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. — Chemosphere 72: 1387–1392, 2008b.CrossRefPubMedGoogle Scholar
  4. Ali, Q., Athar, H.R., Ashraf, M.: Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. — Plant Growth Regul. 56: 107–116, 2008c.CrossRefGoogle Scholar
  5. Baer, G.R., Schrader, L.E.: Inheritance of DNA concentration, and cellular contents of soluble protein, chlorophyll, ribulose bisphosphate carboxylase, and pyruvate Pi dikinase activity in maize leaves. — Crop Sci. 25: 916–923, 1985.CrossRefGoogle Scholar
  6. Bajguz, A., Hayat, S.: Effect of brassinosteroids on the plant responses to environmental stresses. — Plant Physiol. Biochem. 47: 1–8, 2009.CrossRefPubMedGoogle Scholar
  7. Fariduddin, Q., Ahmad, A., Hayat, S.: Photosynthetic response of Vigna radiata to pre-sowing seed treatment with 28-homobrassinolide. — Photosynthetica 41: 307–310, 2003.Google Scholar
  8. Fariduddin, Q., Ahmad, A., Hayat, S.: Responses of Vigna radiata to foliar application of 28-homobrassinolide and kinetin. — Biol. Plant. 48: 465–468, 2004.CrossRefGoogle Scholar
  9. Fariduddin, Q., Khanam, S., Hasan, S.A., Ali, B., Hayat, S., Ahmad, A.: Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. — Acta Physiol. Plant. 31: 889–897, 2009a.CrossRefGoogle Scholar
  10. Fariduddin, Q., Yusuf, M., Hayat, S., Ahmad, A.: Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. — Environ. exp. Bot. 66: 418–424, 2009b.CrossRefGoogle Scholar
  11. Farooq, M., Wahid, A., Basra, S.M.A., Din, I.: Improving water relations and gas exchange with brassinosteroids in rice under drought stress. — J. Agron. Crop Sci. 195: 262–269, 2009.CrossRefGoogle Scholar
  12. Grove, M.D., Spencer, G.F., Rohwedder, W.K., Mandava, N., Worley, J.F., Warthen, J.D., Jr., Steffens, G.L., Flippen-Anderson, J.L., Cook, J.C., Jr.: Brassinolide, a plant growthpromoting steroid isolated from Brassica napus pollen. — Nature 281: 216–217, 1979.CrossRefGoogle Scholar
  13. Hall, D.O.: Nomenclature for different types of isolated chloroplasts. — Nature New Biol. 235: 125–126, 1972.CrossRefPubMedGoogle Scholar
  14. Haubrick, L.L., Assmann, S.M.: Brassinosteroids and plant function: some clues, more puzzles. — Plant Cell Environ. 29: 446–457, 2006.Google Scholar
  15. Hayat, S., Ahmad, A., Mobin, M., Fariduddin, Q., Azam, Z.M.: Carbonic anhydrase, photosynthesis, and seed yield in mustard plants treated with phytohormones. — Photosynthetica 39: 111–114, 2001.CrossRefGoogle Scholar
  16. Hayat, S., Ahmad, A., Mobin, M., Hussain, A., Fariduddin, Q.: Photosynthetic rate, growth and yield of mustard plants sprayed with 28-homobrassinolide. — Photosynthetica 38: 469–471, 2000.CrossRefGoogle Scholar
  17. Hayat, S., Ali, B., Hasan, S.A., Ahmad, A.: Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. — Environ. exp. Bot. 60: 33–41, 2007.CrossRefGoogle Scholar
  18. Holá, D., Kočová, M., Körnerová, M., Sofrová, D., Sopko, B.: Genetically based differences in photochemical activities of isolated maize (Zea mays L.) mesophyll chloroplasts. — Photosynthetica 36: 187–197, 1999.CrossRefGoogle Scholar
  19. Holá, D., Kočová, M., Rothová, O., Wilhelmová, N., Benešová, M.: Recovery of maize (Zea mays L.) inbreds and hybrids from chilling stress of various duration: Photosynthesis and antioxidant enzymes. — J. Plant Physiol. 164: 868–877, 2007.CrossRefPubMedGoogle Scholar
  20. Janeczko, A., Gullner, G., Skoczowski, A., Dubert, F., Barna, B.: Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. — Biol. Plant. 51: 355–358, 2007.CrossRefGoogle Scholar
  21. Kočová, M., Holá, D., Wilhelmová, N., Rothová, O.: The influence of low-temperature on the photochemical activity of chloroplasts and activity of antioxidant enzymes in maize leaves. — Biol. Plant. 53: 475–483, 2009.CrossRefGoogle Scholar
  22. Kohout, L.: New method for preparation of brassinosteroids. — Coll. Czech Chem. Commun. 59: 457–460, 1994.CrossRefGoogle Scholar
  23. Mehta, H., Sarkar, K.R., Sharma, S.K.: Genetic analysis of photosynthesis and productivity in corn. — Theor. appl. Genet. 84: 242–255, 1992.CrossRefGoogle Scholar
  24. Ogweno, J.O., Song, X.S., Shi, K., Hu, W.H., Mao, W.H., Zhou, Y.H., Yu, J.Q., Nogués, S.: Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. — J. Plant Growth Regul. 27: 49–57, 2008.CrossRefGoogle Scholar
  25. Sairam, R.K.: Effect of homobrassinolide application on metabolic activity and grain yield of wheat under normal and water-stress condition. — J. Agron. Crop Sci. 173: 11–16, 1994a.CrossRefGoogle Scholar
  26. Sairam, R.K.: Effect of homobrassinolide application on plant metabolism and grain yield under irrigated and moisturestress conditions of two wheat varieties. — Plant Growth Regul. 14: 173–181, 1994b.CrossRefGoogle Scholar
  27. Shahbaz, M., Ashraf, M., Athar, H.R.: Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? — Plant Growth Regul. 55: 51–64, 2008.CrossRefGoogle Scholar
  28. Singh, I., Shono, M.: Physiological and molecular effects of 24-epibrassinolide, a brassinosteroid on thermotolerance of tomato. — Plant Growth Regul. 47: 111–119, 2005.CrossRefGoogle Scholar
  29. Wang, Z.Y., He, J.X.: Brassinosteroid signal transduction — choices of signals and receptors. — Trends Plant Sci. 9: 91–96, 2004.CrossRefPubMedGoogle Scholar
  30. Wellburn, A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. — Plant Physiol. 144: 307–313, 1994.Google Scholar
  31. Xia, X.J., Huang, Y.Y., Wang, L., Huang, L.F., Yu, Y.L., Zhou, Y.H., Yu, J.Q.: Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. — Pest. Biochem. Physiol. 86: 42–48, 2006.CrossRefGoogle Scholar
  32. Yu, J.Q., Huang, L.F., Hu, W.H., Zhou, Y.H., Mao, W.H., Ye, S.F., Nogués, S.: A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. — J. exp. Bot. 55: 1135–1143, 2004.CrossRefPubMedGoogle Scholar
  33. Zhang, M., Zhai, Z., Tian, X., Duan, L., Li, Z.: Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.). — Plant Growth Regul. 56: 257–264, 2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • M. Kočová
    • 1
  • O. Rothová
    • 1
  • D. Holá
    • 1
  • M. Kvasnica
    • 2
  • L. Kohout
    • 2
  1. 1.Faculty of ScienceCharles University in PraguePragueCzech Republic
  2. 2.Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech RepublicPragueCzech Republic

Personalised recommendations