Skip to main content
Log in

Activity of antioxidant enzyme during in vitro organogenesis in Crocus sativus

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

The effect of various hormonal combinations on regeneration of shoots and roots from meristem-derived callus of Crocus sativus L. and activities of antioxidant enzymes have been studied. The most efficient regeneration occurred with 1.0 mg dm−3 1-naphthaleneacetic acid (NAA) + 1.0 mg dm−3 thidiazuron and 1.0 mg dm−3 NAA + 2.0 mg dm−3 kinetin. For sprouting, regenerated shoot were subcultured on Murashige and Skoog medium containing 1.0 mg dm−3 NAA + 1.0 mg dm−3 benzylaminopurine (BAP). Protein content and superoxide dismutase activity decreased in regenerated shoots and roots and increased in sprouting shoots, while catalase (CAT), peroxidase (POX) and polyphenol oxidase (PPO) activities increased during organogenesis and decreased in sprouting shoots. High CAT and PPO activities were detected in regenerated roots, whereas high POX activity was observed in regenerated shoot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

BAP:

N6-benzylaminopurine

CAT:

catalase

EDTA:

ethylenediaminetetraacetic acid

KIN:

kinetin

L-DOPA:

3,4-dihydroxy-L-phenylalanin

MS:

Murashige and Skoog

NAA:

1-naphthaleneacetic acid

NBT:

nitroblue tetrazolium

PAGE:

polyacrylamide gel electrophoresis

PIC:

picloram (4-amino-3,5-trichloropicolinic acid)

POX:

peroxidase

PPO:

polyphenol oxidase

PVPP:

polyvinylpolypyrrolidone

ROS:

reactive oxygen species

SDS:

sodium dodecyl sulfate

SOD:

superoxide dismutase

TDZ:

thidiazuron

References

  • Aebi, H.: Catalases. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Vol. 2. Pp. 673–684. Academic Press, New York 1974.

    Google Scholar 

  • Abeles, F.B., Biles, C.L.: Characterization of peroxidases in lignifying peach fruit endocarp. — Plant Physiol. 95: 269–273, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Agrawal, V., Sardar, P.: In vitro propagation of Cassia angustifolia through leaflet and cotyledon derived calli. — Biol. Plant. 50: 118–122, 2006.

    Article  CAS  Google Scholar 

  • Basker, D., Negbi, M.: Uses of saffron. — Econ. Bot. 37: 228–236, 1983.

    CAS  Google Scholar 

  • Benson, E.E.: Do free radicals have a role in plant tissue culture recalcitrance? — In Vitro cell. dev. Biol. Plant 36: 163–170, 2000.

    CAS  Google Scholar 

  • Baťková, P., Pospíšilová, J., Synková, H.: Production of reactive oxygen species and development of antioxidative systems during in vitro growth and ex vitro transfer — Biol. Plant. 52: 413–422, 2008.

    Article  Google Scholar 

  • Bhagyalakshmi, N.: Factors influencing direct shoot regeneration from ovary explants of saffron. — Plant Cell Tissue Organ Cult. 58: 205–211, 1999.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Davis, B.J.: Disc electrophoresis. II. Method and application to human serum proteins. — Ann. N.Y. Acad. Sci. 121: 404–427, 1964.

    Article  CAS  PubMed  Google Scholar 

  • Ding, B.Z., Bai, S.H., Wu, Y., Fan, X.P.: Induction of callus and regeneration of plantlets from corm of Crocus sativus L. — Acta bot. sin. 23: 434–440, 1981.

    Google Scholar 

  • Franck, T., Kevers, C., Gaspar, T.: protective enzymatic systems against activated oxygen species compared in normal and vitrified shoots of Prunus avium L. raised in vitro. — Plant Growth Regul. 16: 253–256, 1995.

    Article  CAS  Google Scholar 

  • Gaspar, T.: The concept of cancer in in vitro plant cultures and the implication of habituation to hormones and hyperhydricity. — Plant Tissue Cult. Biotechnol. 1: 126–136, 1995.

    Google Scholar 

  • Giannopolitis, C.N., Ries, S.K.: Superoxide dismutases II. purification and quantitative relationship with water-soluble protein in seedlings. — Plant Physiol. 59: 315–318, 1977.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, S.D., Datta, S.: Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidants on plant regeneration. — Biol. Plant. 47: 179–183, 2003/4.

    Article  CAS  Google Scholar 

  • Huetteman, C.A., Preece, J.E.: Thidiazuron: a potent cytokinin for woody plant tissue culture. — Plant Cell Tissue Organ Cult. 33: 105–119, 1993.

    Article  CAS  Google Scholar 

  • Ilahi, I., Jabeen, M., Firdous, N.: Morphogenesis with saffron tissue culture. — J. Plant Physiol. 128: 227–232, 1987.

    CAS  Google Scholar 

  • Jasska, V.: Isoenzyme diversity and phylogenetic affinities among the Phaseolus beans (Fabaceae). — Plant Syst. Evol. 200: 233–252, 1996.

    Article  Google Scholar 

  • Kumar, G.N.M., Knowles, N.R.: Changes in lipid peroxidation and lipolytic and free radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers. — Plant Physiol. 102: 115–124, 1993.

    CAS  PubMed  Google Scholar 

  • Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. — Nature 227: 680–685, 1970.

    Article  CAS  PubMed  Google Scholar 

  • Lee, D.L., Kim, Y.S., Lee, C.B.: The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). — J. Plant Physiol. 158: 737–745, 2001.

    Article  CAS  Google Scholar 

  • Libik, M., Konieczny, R., Pater, B., Ślesak, I., Miszalski, Z.: Differences in the activities of some antioxidant enzymes and in H2O2 content during rhizogenesis and somatic embryogenesis in callus cultures of the ice plant. — Plant Cell Rep. 23: 834–841, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Molassiotis, A.N., Dimassi, K., Diamantidis, G., Therios, I.: Changes in peroxidases and catalase activity during in vitro rooting. — Biol. Plant. 48: 1–5, 2004.

    Article  CAS  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Piqueras, A., Han, B.H., Escribano, J., Rubio, C., Hellín, E., Fernández, J.A.: Development of cormgenic nodules and microcorms by tissue culture, a new tool for the multiplication and genetic improvement of saffron. — Agronomie 19: 603–610, 1999.

    Article  Google Scholar 

  • Radhika, K., Sujatha, M., Nageshwar Rao, T.: Thidiazuron stimulates adventitious shoot regeneration in different sunflower explants. — Biol. Plant. 50: 174–179, 2006.

    Article  CAS  Google Scholar 

  • Raymond, J., Rakariyatham, N., Azanza, J.L.: Purification and some properties of polyphenoloxidase from sunflower seeds. — Phytochemistry 34: 927–931, 1993.

    Article  CAS  Google Scholar 

  • Rey, H.Y., Mroginski, L.A.: Somatic embryogenesis and plant regeneration in diploid and triploid Arachis pintoi. — Biol. Plant. 50: 152–155, 2006.

    Article  CAS  Google Scholar 

  • Sampathu, S.R., Shivashankar, S., Lewis, Y.S.: Saffron (Crocus sativus L.) cultivation, processing, chemistry and standardization. — CRC Food Sci. Nutr. 20: 123–157, 1984.

    Article  CAS  Google Scholar 

  • Sharma, K.D., Rathour, R., Sharma, R., Goel, S., Sharma, T.R., Singh, B.M.: In vitro development in Crocus sativus. — Biol. Plant. 52: 709–712, 2008.

    Article  CAS  Google Scholar 

  • Tian, M., Gu, Q., Zhu, M.: The involvement of hydrogen peroxide and antioxidant enzymes in the process of shoot organogenesis of strawberry callus. — Plant Sci. 165: 701–707, 2003.

    Article  CAS  Google Scholar 

  • Tang, W., Newton, R.J.: Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus strobes L.) zygotic embryos. — Plant Physiol. Biochem. 43: 760–769, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Van Loon, L.C., Geelen, J.L.M.C.: The relation of polyphenol oxidase and peroxidase to symptom expression in tobacco var. “Samsun NN“ after infection with tobacco mosaic virus. — Acta phytopathol. Acad. Sci. hung. 6: 9–20, 1971.

    Google Scholar 

  • Wang, S.Y., Faust, M.: Changes of fatty acids and sterols in apple buds during the break induced by a plant bioregulator, thidiazuron. — Physiol. Plant. 72: 115–120, 1988.

    Article  CAS  Google Scholar 

  • Wang, S.Y., Jiao, H. J., Faust, M.: Changes in activities of catalase, peroxidase and polyphenol oxidase in apple buds during bud break induced by thidiazuron. — J. Plant Growth Regul. 10: 33–39, 1991.

    Article  Google Scholar 

  • Wendel, J.F., Weeden, N.F.: Visualization and interpretation of plant isozymes. — In: Soltis, D.E., Soltis, P.S. (ed.): Isozymes in Plant Biology. Pp. 4–45. Dioscorides Press, Portland 1989.

    Google Scholar 

  • Woodbury, W., Spencer, A.K., Stahman, M.A.: An improved procedure using ferricyanide for detecting catalase isozymes. — Anal. Biochem. 44: 301–305, 1971.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The financial support of this research was provided by University of Tehran. The authors are grateful to the anonymous reviewers for very helpful and valuable advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Niknam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vatankhah, E., Niknam, V. & Ebrahimzadeh, H. Activity of antioxidant enzyme during in vitro organogenesis in Crocus sativus . Biol Plant 54, 509–514 (2010). https://doi.org/10.1007/s10535-010-0089-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-010-0089-9

Additional key words

Navigation