Advertisement

Biologia Plantarum

, Volume 54, Issue 3, pp 443–450 | Cite as

DIANTHIN, a negative selection marker in tobacco, is non-toxic in transgenic rice and confers sheath blight resistance

  • J. M. Shah
  • K. Veluthambi
Original Papers

Abstract

The DIANTHIN gene encoding a ribosome-inactivating protein (RIP) from Dianthus caryophyllus L. was tested for negative selection in tobacco and rice. Tobacco leaf discs and scutellum-derived callus of rice were transformed with Agrobacterium tumefaciens strain LBA4404 (pSB1, pJAS1). pJAS1 harbors the DIANTHIN gene under the control of the CaMV 35S promoter. Tobacco transformation efficiency, in comparison to pCAMBIA1301, was reduced by 87 % in pJAS1-transformed leaf discs. The DIANTHIN gene proved to be completely toxic to tobacco as all the recovered hygromycin-resistant transgenic plants harbored truncated T-DNAs with deletions of the DIANTHIN gene. Transformation of the DIANTHIN gene under a Mungbean yellow mosaic virus (MYMV)-inducible promoter did not cause any toxicity in tobacco as reflected by the recovery of transgenic tobacco plants with the complete DIANTHIN gene. Transformation efficiency of pJAS1 did not decline in rice. Interestingly, all transgenic rice plants harbored the complete DIANTHIN gene and expressed the gene. The T1 transgenic lines showed reduction of sheath blight symptom in the range of 29 to 42 %. The difference in the sensitivity to DIANTHIN between tobacco and rice provides a new direction to study the mechanisms underlying RIP toxicity in plants.

Additional key words

Nicotiana tabacum Oryza sativa Rhizoctonia solani ribosome-inactivating protein truncated T-DNA 

Abbreviations

int-gus

β-glucuronidase gene with an intron

hph

hygromycin phosphotransferase gene

Hygr

hygromycinresistant

Hygs

hygromycin-sensitive

MS

Murashige and Skoog

NSM

negative selection marker

RIP

ribosome-inactivating protein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We gratefully acknowledge Dr. John Stanley, UK, for providing the DIANTHIN gene. We thank Dr. Toshihiko Komari, Japan Tobacco Inc., Japan, for providing pSB1 and Dr. M. Samiappan, Tamil Nadu Agricultural University, Coimbatore, India for providing the Rhizoctonia solani strain RS7. We thank Dr. K. Dharmalingam for permitting us to use his instrumentation facilities. R. Rajeswaran is acknowledged for constructing pRAJ18 and for performing tobacco transformation with pRAJ18. This research was supported by funds from the Department of Biotechnology (DBT) and University Grants Commission (UGC), Government of India. JMS is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi for Fellowship.

References

  1. Bliffeld, M., Mundy, J., Potrykus, I., Futterer, J.: Genetic engineering of wheat for increased resistance to powdery mildew disease. — Theor. appl. Genet. 98: 1097–1086, 1999.CrossRefGoogle Scholar
  2. Cho, H.-J., Kim, S., Kim, M., Kim, B.-D.: Production of transgenic male sterile tobacco plants with the cDNA encoding a ribosome inactivating protein in Dianthus sinensis L. — Mol. Cell 11: 326–333, 2001.Google Scholar
  3. Corrado, G., Bovi, P.D., Ciliento, R., Gaudio, L., Maro, A.D., Aceto, S., Lorito, M., Rao, R.: Inducible expression of a Phytolacca heterotepala ribosome-inactivating protein leads to enhanced resistance against major fungal pathogens in tobacco. — Phytopathology 95: 206–215, 2005.CrossRefPubMedGoogle Scholar
  4. Czako, M., Marton, L.: The Herpes simplex virus thymidine kinase gene as a conditional negative-selection marker gene in Arabidopsis thaliana. — Plant Physiol. 104: 1067–1071, 1994.CrossRefPubMedGoogle Scholar
  5. Endo, Y., Mitsui, K., Motizuki, M., Tsurugi, K.: The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes: The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. — J. biol. Chem. 262: 5908–5912, 1987.PubMedGoogle Scholar
  6. Erikson, O., Hertzberg, M., Nasholm, T.: A conditional marker gene allowing both positive and negative selection in plants. — Nat. Biotechnol. 22: 455–458, 2004.CrossRefPubMedGoogle Scholar
  7. Frigerio, L., Vitale, A., Lords, J.M., Ceriotti, A., Roberts, L.M.: Free ricin A chain, proricin, and native toxin have different cellular fates when expressed in tobacco protoplasts. — J. biol. Chem. 273: 14194–14199, 1998.CrossRefPubMedGoogle Scholar
  8. Gleave, A.P., Mitra, D.S., Mudge, S.R., Morris, B.A.: Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. — Plant mol. Biol. 40: 223–235, 1999.CrossRefPubMedGoogle Scholar
  9. Hanson, B., Engler, D., Moy, Y., Newman, B., Ralston, E., Gutterson, N.: A simple method to enrich an Agrobacterium-transformed population for plants containing only T-DNA sequences. — Plant J. 19: 727–734, 1999.CrossRefPubMedGoogle Scholar
  10. Hilson, P., Dewulf, J., Delporte, F., Installe, P., Jacquemin, J.-M., Jacobs, M., Negrutiu, I.: Yeast RAS2 affects cell viability, mitotic division and transient gene expression in Nicotiana species. — Plant mol. Biol. 14: 669–685, 1990.CrossRefPubMedGoogle Scholar
  11. Hong, Y., Saunders, K., Hartley, M.R., Stanley, J.: Resistance to geminivirus infection by virus-induced expression of dianthin in transgenic plants. — Virology 220: 119–127, 1996.CrossRefPubMedGoogle Scholar
  12. Huang, M.-X., Hou, P., Wei, Q., Xu, Y., Chen, F.: A ribosomeinactivating protein (curcin 2) induced from Jatropha curcas can reduce viral and fungal infection in transgenic tobacco. — Plant Growth Regul. 54: 115–123, 2008.CrossRefGoogle Scholar
  13. Jach, G., Gornhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J., Maas, C.: Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. — Plant J. 8: 97–109, 1995.CrossRefPubMedGoogle Scholar
  14. Kim, J.-K., Jang, I.-C., Wu, R., Zuo, W.-N., Boston, R.S., Lee, Y.-H., Ahn, I.-P., Nahm, B.H.: Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. — Transgenic Res. 12: 475–484, 2003.CrossRefPubMedGoogle Scholar
  15. Komari, T., Hiei, Y., Saito, Y., Murai, N., Kumashiro, T.: Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. — Plant J. 10: 165–174, 1996.CrossRefPubMedGoogle Scholar
  16. Koning, A., Jones, A., Fillatti, J.J., Comai, L., Lassner, M.W.: Arrest of embryo development in Brassica napus mediated by modified Pseudomonas aeruginosa exotoxin A. — Plant mol. Biol. 18: 247–258, 1992.CrossRefPubMedGoogle Scholar
  17. Koprek, T., McElroy, D., Louwerse, J., Williams-Carrier, R., Lemaux, P.G.: Negative selection systems for transgenic barley (Hordeum vulgare L.): comparison of bacterial codA and cytochrome P450 gene-mediated selection. — Plant J. 19: 719–726, 1999.CrossRefPubMedGoogle Scholar
  18. Li, H.Y., Zhu, Y.M., Chen, Q., Conner, R., Ding, X.D., Li, J., Zhang, B.B.: Production of transgenic soybean plants with two anti-fungal protein genes via Agrobacterium and particle bombardment. — Biol. Plant. 48: 367–374, 2004.CrossRefGoogle Scholar
  19. Lodge, J.K., Kaniewski, W.K., Tumer, N.E.: Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. — Proc. nat. Acad. Sci. USA 90: 7089–7093, 1993.CrossRefPubMedGoogle Scholar
  20. Logemann, J., Jach, G., Tommerup, H., Mundy, J., Schell, J.: Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants. — Nat. Biotechnol. 10: 305–308, 1992.CrossRefGoogle Scholar
  21. Maddaloni, M., Forlani, F., Balmas, V., Donini, G., Stasse, L., Corazza, L., Motto, M.: Tolerance to the fungal pathogen Rhizoctonia solani AG4 of transgenic tobacco expressing the maize ribosome-inactivating protein b-32. — Transgenic Res. 6: 393–402, 1997.CrossRefGoogle Scholar
  22. Mariani, C., Gossele, V., De Beuckeleer, M., De Block, M., Goldberg, R.B., De Greef, W., Leemans, J.: A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. — Nature 357: 384–387, 1992.CrossRefGoogle Scholar
  23. Miki, B., McHugh, S.: Selectable marker genes in transgenic plants: applications, alternatives and biosafety. — J. Biotechnol. 107: 193–232, 2004.CrossRefPubMedGoogle Scholar
  24. Nielsen, K., Boston, R.S.: Ribosome-inactivating proteins: a plant perspective. — Annu. Rev. Plant Physiol. Plant mol. Biol. 52: 785–816, 2001.CrossRefPubMedGoogle Scholar
  25. Nussaume, L., Vincentz, M., Caboche, M.: Constitutive nitrate reductase: a dominant conditional marker for plant genetics. — Plant J. 1: 267–274, 1991.CrossRefGoogle Scholar
  26. Pawlowski, K., Kunze, R., De Vries, S., Bisseling, T.: Isolation of total, poly(A) and polysomal RNA from plant tissues. — In: Gelvin, S.B., Schilperoort, R.A. (ed.): Plant Molecular Biology Manual. Pp. D5/1–D5/13. Kluwer Academic Publishers, Dordrecht — Boston — London 1994.Google Scholar
  27. Rajeswaran, R., Sunitha, S., Shivaprasad, P.V., Pooggin, M.M., Hohn, T., Veluthambi, K.: The mung bean yellow mosaic begomovirus transcriptional activator protein transactivates the viral promoter-driven transgene and causes toxicity in transgenic tobacco plants. — Mol. Plant Microbe Interact. 20: 1545–1554, 2007.CrossRefPubMedGoogle Scholar
  28. Rogers, S.O., Bendich, A.J.: Extraction of total cellular DNA from plants. — In: Gelvin, S.B., Schilperoort, R.A. (ed.): Plant Molecular Biology Manual. Pp. A6/1–A6/10. Kluwer Academic Publishers, Dordrecht — Boston — London 1988.Google Scholar
  29. Schlaman, H.R.M., Hooykaas, P.J.J.: Effectiveness of the bacterial gene codA encoding cytosine deaminase as a negative selectable marker in Agrobacterium-mediated plant transformation. — Plant J. 11: 1377–1385, 1997.CrossRefGoogle Scholar
  30. Sridevi, G., Sabapathi, N., Meena, P., Nandakumar, R., Samiyappan, R., Muthukrishnan, S., Veluthambi, K.: Transgenic indica rice variety Pusa Basmati1 constitutively expressing a rice chitinase gene exhibits enhanced resistance to Rhizoctonia solani. — J. Plant Biochem. Biotechnol. 12: 93–101, 2003.Google Scholar
  31. Stirpe, F., Battelli, M.G.: Ribosome-inactivating proteins: progress and problems. — Cell. mol. Life Sci. 63: 1850–1866, 2006.CrossRefPubMedGoogle Scholar
  32. Stirpe, F., Williams, D.G., Onyon, L.J., Legg, R.F., Stevens, W.A.: Dianthins, ribosome-damaging proteins with antiviral properties from Dianthus caryophyllus L. (carnation). — Biochem. J. 195: 399–405, 1981.PubMedGoogle Scholar
  33. Sundaresan, V., Springer, P., Volpe, T., Haward, S., Jones, J.D., Dean, C., Ma, H., Martienssen, R.: Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. — Genes Dev. 9: 1797–1810, 1995.CrossRefPubMedGoogle Scholar
  34. Sunilkumar, G., Vijayachandra, K., Veluthambi, K.: Preincubation of cut tobacco leaf explants promotes Agrobacterium-mediated transformation by increasing vir gene induction. — Plant Sci. 141: 51–58, 1999.CrossRefGoogle Scholar
  35. Terada, R., Asao, H., Iida, S.: A large-scale Agrobacterium-mediated transformation procedure with a strong positivenegative selection for gene targeting in rice (Oryza sativa L.). — Plant Cell Rep. 22: 653–659, 2004.CrossRefPubMedGoogle Scholar
  36. Terada, R., Urawa, H., Inagaki, Y., Tsugane, K., Iida, S.: Efficient gene targeting by homologous recombination in rice. — Nat. Biotechnol. 20: 1030–1034, 2002.CrossRefPubMedGoogle Scholar
  37. Thykjaer, T., Finnemann, J., Schauser, L., Christensen, L., Poulsen, C., Stougaard, J.: Gene targeting approaches using positive-negative selection and large flanking regions. — Plant mol. Biol. 35: 523–530, 1997.CrossRefPubMedGoogle Scholar
  38. Upadhyaya, N.M., Zhou, X.-R., Wu, L., Ramm, K., Dennis, E.S.: The tms2 gene as a negative selection marker in rice. — Plant mol. Biol. Rep. 18: 227–233, 2000.CrossRefGoogle Scholar
  39. Wang, P., Zoubenko, O., Tumer, N.E.: Reduced toxicity and broad spectrum resistance to viral and fungal infection in transgenic plants expressing pokeweed antiviral protein II. — Plant mol. Biol. 38: 957–964, 1998.CrossRefPubMedGoogle Scholar
  40. Yuan, H., Ming, X., Wang, L., Hu, P., An, C., Chen, Z.: Expression of a gene encoding trichosanthin in transgenic rice plants enhances resistance to fungus blast disease. — Plant Cell Rep. 20: 992–998, 2002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Plant Biotechnology, School of BiotechnologyMadurai Kamaraj UniversityMaduraiIndia

Personalised recommendations