Advertisement

Biologia Plantarum

, Volume 54, Issue 3, pp 430–434 | Cite as

Induction of capsaicinoid synthesis in Capsicum chinense cell cultures by salicylic acid or methyl jasmonate

  • M. G. Gutiérrez-Carbajal
  • M. Monforte-González
  • M.de L. Miranda-Ham
  • G. Godoy-Hernández
  • F. Vázquez-Flota
Original Papers

Abstract

Suspension cultures of Habanero pepper (Capsicum chinense Jacq.) were exposed to salicylic acid or methyl jasmonate to change secondary metabolism. Both treatments led to the accumulation of capsaicinoids and their late biosynthetic intermediate, vanillin. Both elicitors had a positive effect on the activities of phenylalanine ammonia lyase and coumarate O-methyltransferase, but none of them represented the main limiting step for capsaicinoid accumulation since vanillin contents were two orders of magnitude higher than those of capsaicinoids.

Additional key words

Habanero pepper secondary metabolism vanillin 

Abbreviations

COMT

coumarate O-methyltransferase

DMSO

dimethyl sulfoxide

MeJa

methyl jasmonate

MS

Murashige and Skoog culture medium

PAL

phenylalanine ammonia lyase

TLC

thin layer chromatography

SA

salicylic acid

2,4-D

2,4-dichlorophenoxyacetic acid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Council for Science and Technology (CONACYT, México), grants P1-60746 and P50879-Z and the Fundación Produce Yucatán, agreement 31-2004-0635, MGGC was recipient of a CONACYT scholarship for MSc studies. The authors wish to thank Mr. Fernando Contreras-Martín for maintaining the parental materials of C. chinense.

References

  1. Aluru, M., Mazourek, M., Landry, L., Curry, J., Jahn M., O’Connell, M.: Differential expression of fatty acid synthase genes, Acl, Fat and Kas, in Capsicum fruit. — J. exp. Bot. 54: 1655–1664, 2003.CrossRefPubMedGoogle Scholar
  2. Curry, J., Aluru, M., Mendoza, M., Nevarez, J., Melendrez M., O’Connell, M.: Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum spp. — Plant Sci. 148: 47–57, 1999.CrossRefGoogle Scholar
  3. Dixon, R., Paiva, N.: Stress-induced phenylpropanoid metabolism. — Plant Cell 7: 1085–1097, 1995.CrossRefPubMedGoogle Scholar
  4. Hall, R., Yeoman, M.: The influence of intracellular pools of phenylalanine derivatives upon the synthesis of capsaicin by immobilized cell cultures of the chilli pepper, Capsicum frutescens. — Planta 185: 72–80, 1991.CrossRefGoogle Scholar
  5. Harvell, K.P., Bosland, P.W.: The environment produces a significant effect on pugency of chili. — HortScience 32: 1292–1297, 1997.Google Scholar
  6. Johnson, C.D., Decoteau, D.R.: Nitrogen and potassium fertility affects Jalapeño pepper plant growth, pod yield and pungency. — HortScience 31: 1119–1123, 1996.Google Scholar
  7. Lindsey, K.: Incorporation of [14C]phenylalanine and [14C]cinnamic acid into capsaicin in cultured cells of Capsicum frutescens. — Phytochemistry 25: 2793–2801, 1986.CrossRefGoogle Scholar
  8. Maleck, K., Dietrich, R.: Defense on multiple fronts: how do plants cope with diverse enemies? Trends Plant Sci. 4: 1360–1385, 1999.CrossRefGoogle Scholar
  9. Monforte-González, M., Medina-Lara, F., Gutierrez-Carbajal, G., Vázquez-Flota, F.: Capsaicinoid quantitation by in situ densitometry of thin layer chromatography plates. — J. Liq. Chromatog. Rel. Technol. 30: 1697–1704, 2007.CrossRefGoogle Scholar
  10. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 15: 473–497, 1962.CrossRefGoogle Scholar
  11. Ochoa-Alejo, N., Gómez-Peralta, J.: Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (Capsicum annum L.). — J. Plant Physiol. 141: 147–152, 1993.Google Scholar
  12. Prasad, B.C.N., Gururaj, H.B., Kumar, V., Giridhar, P., Parimalan, R., Sharma, A., Ravishankar, G.A.: Influence of 8-methyl-nonenoic acid on capsaicin biosynthesis and invivo and in-vitro cell cultures of Capsicum spp. — J. agr. Food Chem. 54: 1854–1859, 2006.CrossRefGoogle Scholar
  13. Radman, R., Saez, T., Bucke, C., Keshavarz, T.: Elicitation of plants and microbial cell systems. — Biotech. appl. Biochem. 37: 91–102. 2003.CrossRefGoogle Scholar
  14. Repka, V.: Elicitor-stimulated induction of defense mechanisms and defense gene activation in grapevine cell suspension cultures. — Biol. Plant. 44: 555–565, 2001.CrossRefGoogle Scholar
  15. Salgado-Garcigilia, R., Ochoa-Alejo, N.: Increased capsaicin content in PFP-resistant cells of chili pepper (Capsicum annuum L.). — Plant Cell Rep. 8: 617–620, 1990.CrossRefGoogle Scholar
  16. Sanatombi, K., Sharma G.J.: In vitro plant regeneration in six cultivars of Capsicum spp. using different explants. — Biol. Plant. 52: 141–145, 2008.CrossRefGoogle Scholar
  17. Santana-Buzzy, N., Canto-Flick, A., Barahona-Pérez, F., Moltalvo-Peniche, M.C., Zapata-Castillo, P.Y., Solís-Ruiz, A., Zaldívar-Collí, A., Gutiérrez-Alonso, O., Miranda-Ham, M.L.: Regeneration of Habanero Pepper (Capsicum chinense Jacq.) via organogenesis. — HortScience 40: 1829–1831, 2005.Google Scholar
  18. Stewart, C., Jr., Mazourek, M., Stellari, G.M., O’Connell, M., Jahn, M.: Genetic control of pungency in C. chinense via the Pun1 locus. — J. exp. Bot. 58: 979–991, 2007.CrossRefPubMedGoogle Scholar
  19. Sudha, G., Ravishankar, A.: Influence of methyl jasmonate and salicylic acid in the enhancement of capsaiscin production in cell suspension cultures of Capsicum frutescens Mill. — Curr. Sci. 85: 1212–1217, 2003.Google Scholar
  20. Sudhakar, J., Ravishankar, A., Venkataraman, L.: In vitro capsaicin production by immobilized cells and placental tissues of Capsicum annuum L. grown in liquid medium. — Plant Sci. 70: 223–229, 1990.CrossRefGoogle Scholar
  21. Sudhakar, J., Ravishankar, A., Venkataraman, L.: Elicitation of capsaicin production in freely suspended cells and immobilized cell cultures of Capsicum frutescens Mill. — Food Biotechnol. 5: 197–205, 1991.CrossRefGoogle Scholar
  22. Sudhakar, T., Ravishankar, G., Venkataraman, L.: Biotransformation of ferulic acid and vanillylamine to capsaicin and vanillin in immobilized cell cultures of Capsicum frutescens. — Plant Cell Tissue Organ Cult. 44: 117–121, 1996.CrossRefGoogle Scholar
  23. Sung, Y., Chang, Y.Y., Ting, N.L.: Capsaicin biosynthesis in water-stressed hot pepper fruits. — Bot. Bull. Acad. sin. 46: 35–42, 2005.Google Scholar
  24. Suresh, B., Ravinshankar, G.A.: Methyl jasmonate modulated biotransformation of phenylpropanoids to vanillin related metabolites using Capsicum frutescens root cultures. — Plant Physiol. Biochem. 43: 125–131, 2005.CrossRefPubMedGoogle Scholar
  25. Tetsuya, S., Teruo, K., Kazuo, I.: Biosynthesis of acyl moieties of capsaicin and its analogues from valine and leucine in Capsicum fruit. — Plant Cell Physiol. 22: 23–32, 1981.Google Scholar
  26. Xu, C.M., Ou, Y., Zhao, B., Whang, X.D., Yuan, X.F., Wang Y.C.: Syringin production by Saussurea medusa cell cultures in a novel bioreactor. — Biol. Plant. 52: 377–380, 2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • M. G. Gutiérrez-Carbajal
    • 1
  • M. Monforte-González
    • 1
  • M.de L. Miranda-Ham
    • 1
  • G. Godoy-Hernández
    • 1
  • F. Vázquez-Flota
    • 1
  1. 1.Centro de Investigación Científica de YucatánUnidad de Bioquímica y Biología Molecular de PlantasMérida, YucatánMéxico

Personalised recommendations