Advertisement

Biologia Plantarum

, Volume 54, Issue 2, pp 361–365 | Cite as

Direct somatic embryogenesis and shoot organogenesis from leaf explants of Primulina tabacum

  • G. H. Ma
  • C. X. He
  • H. Ren
  • Q. M. Zhang
  • S. J. Li
  • X. H. Zhang
  • B. Eric
Brief Communication

Abstracts

An efficient propagation system via somatic embryogenesis and shoot organogenesis and plant regeneration system for endangered species Primulina tabacum Hance was established. Thidiazuron (TDZ) was the key plant growth regulator for inducing somatic embryogenesis and kinetin (KIN) and 6-benzylaminopurine (BAP) were the key cytokinins for inducing shoot organogenesis from leaf explants. TDZ combined with BAP or KIN in the induction Murashige and Skoog medium induced both somatic embryos and adventitious shoots. Leaf explants with abaxial site in contact with the medium induced less somatic embryos or adventitious shoots compared to inversely placed leaf explants and the optimum pH was 6.5–7.0. Secondary somatic embryos or adventitious shoot could be induced from primary somatic embryos using TDZ and BAP. Shoots developed adventitious roots on rooting medium containing 0.5 μM indole-3-butyric acid and 0.2 % activated carbon. Over 90 % of plantlets survived following acclimatization and transfer to potting mixture (sand:Vermiculite:limestone; 1:2:1).

Additional key words

adventitious shoot 6-benzylaminopurine 3-indolebutyric acid kinetin micropropagation thidiazuron 

Abbreviations

BAP

6-benzylaminopurine

2,4-D

2,4-dichlorophenoxyacetic acid

IBA

indole-3-butyric acid

KIN

kinetin

NAA

α-naphthalene acetic acid

TDZ

thidiazuron

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

Supports from the Corporation Program of National Basic Research Program of China (973 Program) (2007CB411600), the Program for Tropical & Subtropical Plant Germplasm Construction of Guangdong Province (2005B60301001, 2006B60101034) and Guangdong Scientific Program (2007A060306011) are gratefully acknowledged.

References

  1. Divya, K., Swathi, A.T., Jami, S.K., Kirtip, P.B.: Efficient regeneration from hypocotyl explants in three cotton cultivars. — Biol. Plant. 52: 201–208, 2008.CrossRefGoogle Scholar
  2. Faisal, M., Anis, M.: Thidiazurun induced high frequency axillary shoot multiplication in Psoralea corylifolia. — Biol. Plant. 50: 437–440, 2006.CrossRefGoogle Scholar
  3. Kumari, G.K., Ganesan, M., Jayabalan, N.: Somatic organogenesis and plant regeneration in Ricinus communis. — Biol. Plant. 52: 17–25, 2008.CrossRefGoogle Scholar
  4. Landi, L., Mezzetti, B.: TDZ, auxin and genotype effects on leaf organogenesis in Fragaria. — Plant Cell Rep. 25: 281–288, 2006.CrossRefPubMedGoogle Scholar
  5. Ledbetter, D.I., Preece, J.E.: Thidiazuron stimulates adventitious shoot production from Hydrangea quercifolia Bartr. leaf explants. — Sci. Hort. 101: 121–126, 2004.CrossRefGoogle Scholar
  6. Ma, G.H., Li, Y., Jiao, G.L., Fu, X.P., Lin, Y.R.: Adventitious shoots and callus formation in vitro from young leaves of Melastoma affine. — Floricult. Ornam. Biotechnol. 1: 27–29, 2007.Google Scholar
  7. Ma, G.H., Wu, G.J.: Direct shoot organogenesis from cotyledon explants in Ochna integerrima. — Propag. Ornam. Plant 6: 145–148, 2006.Google Scholar
  8. Ma, G.H., Xu, Q.S.: Induction of somatic embryogenesis and adventitious shoot formation from immature leaves of cassava. — Plant Cell Tissue Organ Cult. 70: 281–288, 2002.CrossRefGoogle Scholar
  9. Ma, G.H., Xu, Q.S., Xian, Y.L.: [Direct primary somatic embryogenesis and shoot formation in Manihot esculenta.] — Acta bot. sin. 40: 503–507, 1998. [In Chin.]Google Scholar
  10. Mathews, H., Schopke, C., Carcamo, R., Chavarriaga, P., Fauquet, C., Beachy, R.N.: Improvement of somatic embryogenesis and plant-recovery in cassava. — Plant Cell Rep. 12: 328–333, 1993.CrossRefGoogle Scholar
  11. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue culture. — Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  12. Murch, S.J., Saxena, P.K.: The role of proline in thidiazuron induced somatic embryogenesis of peanut. — In Vitro cell. dev. Biol. Plant 5: 102–105, 1999.Google Scholar
  13. Murthy, B.N.S., Saxena, P.K.: Somatic embryogenesis and plant regeneration of neem (Azadirachta indica A. Juss). — Plant Cell Rep. 17: 469–475, 1998.CrossRefGoogle Scholar
  14. Nhut, D.T., Vu, N.H., Xuan, L.T.T.: The application of a bag culture system for the in vitro propagation of Sinningia spp. — Propag. Ornam. Plant 5: 45–50, 2005.Google Scholar
  15. Raemakers, C.J.J.M., Amati, M., Staritsky, G., Jacobsen, E., Visser, R.G.F.: Cyclic somatic embryogenesis and plant regeneration in cassava. — Ann. Bot. 71: 289–294, 1993.CrossRefGoogle Scholar
  16. Raemakers, K., Jacobsen, E., Visser, R.: The use of somatic embryogenesis for plant propagation in cassava. — Mol. Biotechnol. 14: 215–221, 2000.CrossRefPubMedGoogle Scholar
  17. Ren, H., Peng, S.L., Zhang, J.X., Jian, S.G., Wei, Q., Zhang, Q.M., Liu, N., Li, S.J., Chen, W.B., Zhuang, Y.Z.: [The ecological and biological characteristics of an endangered plant, Primulina tabacum Hance.] — Acta ecol. sin. 23: 1012–1017, 2003. [In Chin.]Google Scholar
  18. Scaramuzzi, F., Apollonio, G., D’Emerico, S.: Adventitious shoot regeneration from Sinningia speciosa leaf discs in vitro and stability of ploidy level in subcultures. — In Vitro cell. dev. Biol. Plant 35: 217–221, 1999.CrossRefGoogle Scholar
  19. Tang, Z.H., Lin, H.H., Shi, L., Chen, W.L.: Rapid in vitro multiplication of Chirita longgangensis WT Wang: an endemic and endangered gesneriaceae species in China. — HortScience 42: 638–641, 2007.Google Scholar
  20. Xing, F.W.: [Rare Plants of China.] — Hunan Education Publisher, Changsha 2005. [In Chin.]Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • G. H. Ma
    • 1
  • C. X. He
    • 1
    • 2
  • H. Ren
    • 1
  • Q. M. Zhang
    • 1
  • S. J. Li
    • 1
  • X. H. Zhang
    • 1
  • B. Eric
    • 3
  1. 1.South China Botanical GardenChinese Academy of SciencesGuangzhouP.R. China
  2. 2.Graduate University of Chinese Academy of SciencesBeijingP.R. China
  3. 3.Kings Park and Botanic GardenWest PerthAustralia

Personalised recommendations