Biologia Plantarum

, Volume 54, Issue 2, pp 315–320 | Cite as

Effect of salicylic acid pretreatment on cadmium toxicity in wheat

Original Papers


Cadmium (100, 400 and 1000 μM CdCl2) treatments resulted in the inhibition of root dry biomass, root elongation and increased Cd accumulation in wheat (Triticum aestivum L.) roots. Further, these treatments decreased relative water content, chlorophyll content, 14CO2-fixation, activities of phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase and abscisic acid content while increased malondialdehyde, hydrogen peroxide and free proline contents. Chloroplast and root ultrastructure was also changed. Pretreatment of seeds with SA (500 μM) for 20 h resulted in amelioration of these effects.

Additional key words

abscisic acid chlorophyll chloroplast 14CO2-fixation H2O2 PEPC proline RuBPC Triticum aestivum 





phosphoenolpyruvate carboxylase


ribulose-1,5-bisphosphate carboxylase


relative water content


salicylic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bandurska, H.: The effect of proline on nitrate reductase activity in water-stressed barley leaves. — Acta Physiol. Plant. 1: 3–11, 1991.Google Scholar
  2. Bandurska, H., Stroinski, A.: ABA and proline accumulation in leaves and roots of wild (Hordeum spontaneum) and cultivated (Hordeum vulgare ‘Maresi’) barley genotypes under water deficit conditions. — Acta Physiol. Plant. 25: 55–61, 2003.CrossRefGoogle Scholar
  3. Bandurska, H., Stroinski, A.: The effect of salicylic acid on barley response to water deficit. — Acta Physiol. Plant. 27: 379–386, 2005.CrossRefGoogle Scholar
  4. Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies. — Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  5. Blanke, M., Notton, B., Hucklesby, D.: Physical and kinetic properties of photosynthetic PEP carboxylase in developing apple fruit. — Phytochemistry 25: 601–606, 1986.CrossRefGoogle Scholar
  6. Bray, G.A.: A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. — Anal. Biochem. 1: 276–285, 1960.CrossRefGoogle Scholar
  7. Cataldo, D.A., Garland, R., Wildung, R.E.: Cadmium uptake kinetics in intact soybean plants. — Plant Physiol. 73: 844–848, 1983.CrossRefPubMedGoogle Scholar
  8. Choudhury, S., Panda, S.K.: Role of salicylic acid in regulating cadmium induced oxidative stress in Oryza sativa L. roots. — Bulg. J. Plant Physiol. 30: 95–110, 2004.Google Scholar
  9. Costa, G., Morel, J.: Water relations, gas exchange and amino acid content in Cd treated lettuce. — Plant Physiol. Biochem. 32: 561–570, 1994.Google Scholar
  10. Delauney, A.J., Verma, D.P.S.: Proline biosynthesis and osmoregulation in plants. — Plant J. 4: 215–223, 1993.CrossRefGoogle Scholar
  11. Farago, M.E., Mullen, W.A.: Plants which accumulate metals. Part IV. A possible copper-proline complex from the roots of Armeria maritima. — Inorg. chim. Acta 32: 93–94, 1979.CrossRefGoogle Scholar
  12. Fodor, A., Szabó-Nagy, A., Erdei, L.: The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. — J. Plant Physiol. 14: 787–792, 1995.Google Scholar
  13. Gouia, H., Suzuki, A., Brulfert, J., Ghorbal, H.: Effect of cadmium on the coordination of nitrogen and carbon metabolism in bean seedlings. — Plant Physiol. 160: 367–376, 2004.Google Scholar
  14. Greger, M., Ögren, E.: Direct and indirect effects of Cd2+ on photosynthesis in sugar beet (Beta vulgaris). — Physiol. Plant. 83: 129–135, 1991.CrossRefGoogle Scholar
  15. Harpster, M.H., Taylor, W.C.: Maize phosphoenolpyruvate carboxylase. — J. biol. Chem. 261: 6132–6136, 1986.PubMedGoogle Scholar
  16. He, Y., Zhu, Z.J.; Exogenous salicylic acid alleviates NaCl toxicity and increases antioxidative enzyme activity in Lycopersicon esculentum. — Biol. Plant. 52: 792–795, 2008.CrossRefGoogle Scholar
  17. Hernandez, J.A., Olmos, E., Corpas, F.J., Sevilla, F., Del Rio, L.A.: Salt-induced oxidative stress in chloroplasts of pea plants. — Plant Sci. 105: 151–167. 1995.CrossRefGoogle Scholar
  18. Janda, T., Szalai, G., Tari, I., Paldi, E.: Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. — Planta 208: 175–180, 1999.CrossRefGoogle Scholar
  19. Kahle, H.: Response of roots of trees to heavy metals. — Environ. exp. Bot. 33: 99–119, 1993.CrossRefGoogle Scholar
  20. Khan, W., Prithiviraj, B., Smith, D.L.: Photosynthetic responses of corn and soy bean to foliar application of salicylates. — J. Plant Physiol. 50: 1–8, 2003.Google Scholar
  21. Krantev, A., Yordanova, R., Janda, T., Szalai, G., Popova, L.: Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. — J. Plant Physiol. 165: 920–931, 2008.CrossRefPubMedGoogle Scholar
  22. Krantev, A., Yordanova, R., Popova, L.: Salicylic acid decreases Cd toxicity in maize plants. — Gen. appl. Plant Physiol. 1: 45–52, 2006.Google Scholar
  23. Liu, Y., Wang, X., Zeng, G., Qu, D., Gu, J., Zhou, M., Chai, L.: Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud. — Chemosphere 69: 99–107, 2007.CrossRefPubMedGoogle Scholar
  24. Madhava Rao, K.V., Sresty, T.V.S.: Antioxidative parameters in the seedlings of pigeon pea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. — Plant Sci. 157: 113–128, 2000.CrossRefPubMedGoogle Scholar
  25. Mahdavian, K., Kalantari, K.M., Ghorbanli, M.; Torkzade, M.: The effects of salicylic acid on pigment contents in ultraviolet radiation stressed pepper plants. — Biol. Plant. 52: 170–172, 2008.CrossRefGoogle Scholar
  26. Merkouropoulos, G., Barnett, D.C., Shirasat, A.H.: The Arabidopsis extension gene is developmentally regulated, is induced by wounding, methyl jasmonate, abscisic and salicylic acid, and codes for a protein with unusual motifs. — Planta 208: 212–219, 1999.CrossRefPubMedGoogle Scholar
  27. Metwally, A., Finkermeier, I., Georgi, M., Dietz, K.J.: Salicylic acid alleviates the cadmium toxicity in barley seedlings. — Plant Physiol. 132: 272–281, 2003.CrossRefPubMedGoogle Scholar
  28. Mishra, A., Choudhuri, M.A.: Effects of salicylic acid on heavy metal induced membrane degradation mediated by lipoxygenase in rice. — Biol. Plant 42: 409–415, 1999.CrossRefGoogle Scholar
  29. Moussa, H.R.: Effect of cadmium on growth and oxidative metabolism of faba bean plants. — Acta agron. hung. 52: 269–276, 2004.CrossRefGoogle Scholar
  30. Moussa, H.R., Abdel-Aziz, S.M.: Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. — Aust. J. Crop Sci. 1: 31–36, 2008.Google Scholar
  31. Moussa, H.R., Khodary S.E.A.: Effect of salicylic acid on the growth, photosynthesis and carbohydrate metabolism in salt stressed maize plants. — Isotope Radiat. Res. 35: 179–187, 2003.Google Scholar
  32. Nassiri, Y., Mansot, J.L., Wéry, J., Ginsburger-Vogel, T., Anuard, C.J.: Ultrastructureal and electron energy loss spectroscopy studies of sequestration mechanisms of Cd and Cu in the marine diaton Skeletonema costatum. — Arch. Environ. Contam. Toxicol. 33: 147–155, 1997b.CrossRefPubMedGoogle Scholar
  33. Nassiri, Y., Wéry, J., Mansot, J.L., Ginsburger-Vogel, T.: Cadmium bioaccumulation in Tetraselmis suecica: an electron energy loss spectroscopy (EELS) study. — Arch. Environ. Contam. Toxicol. 33: 156–161, 1997a.CrossRefPubMedGoogle Scholar
  34. Ouariti, O., Boussama, N., Zarrouk, M., Cherif, A., Ghorbal, M.H.: Cadmium- and copper-induced changes in tomato membrane lipids. — Phytochemistry 45: 1343–1350, 1997.CrossRefPubMedGoogle Scholar
  35. Pancheva, T.V., Popova, L.P., Uzunova, A.N.: Effects of salicylic acid on growth and photosynthesis in barley plants. — J. Plant Physiol. 149: 57–63, 1996.Google Scholar
  36. Patterson, B.D., Elspeth, A., Ferguson, I.B.: Estimation of hydrogen peroxide in plant extracts using titanium (IV). — Anal. Biochem. 139: 487–92, 1984.CrossRefPubMedGoogle Scholar
  37. Pietrini, F., Iannelli, M.A., Pasqualini, S., Massacci, A.: Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. — Plant Physiol. 133: 829–837, 2003.CrossRefPubMedGoogle Scholar
  38. Porra, R.J., Thompson, W.A., Kriedemann, P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. — Biochem. biophys. Acta 975: 384–394, 1989.CrossRefGoogle Scholar
  39. Rafi, M.M., Epstein, E.: Silicon absorption by wheat (Triticum aestivum L.). — Plant Soil 211: 223–230, 1999.CrossRefGoogle Scholar
  40. Raskin, I.: Role of salicylic acid in plants. — Annu. Rev. Plant Physiol. Plant mol. Biol. 43: 439–463, 1992.CrossRefGoogle Scholar
  41. Rauser, W.E., Ackerley, C.A.: Localization of cadmium in granules within differentiating and mature root cells. — Can. J. Bot. 65: 643–646, 1987.CrossRefGoogle Scholar
  42. Salama, S., Trivedi, S., Busheva, M, Arafa, A.A., Garab, G., Erclei, L.: Effects of NaCl salinity on growth, cation accumulation, chloroplast structure and function in wheat cultivars differing in salt tolerance. — J. Plant Physiol. 144: 241–247. 1994.Google Scholar
  43. Sanità di Toppi, L., Gabrielli, R.: Response to cadmium in higher plants, — Environ. exp. Bot. 41: 105–130, 1999.CrossRefGoogle Scholar
  44. Senaratana, T., Touchell, D., Bunn, E., Dixon, K.: Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. — Plant Growth Regul. 30: 157–161, 2000.CrossRefGoogle Scholar
  45. Shakirova, F.M., Sakhabutdinovam A.R., Bezrukova, M.V., Fatkhutdinova, R.A., Fatkhutdinova, D.R.: Changes in hormonal status of wheat seed lings induced by salicylic acid and salinity. — Plant Sci. 164: 317–322, 2003.CrossRefGoogle Scholar
  46. Somashekaraiah, B.V., Padmaja, K., Prasad, A.R.K.: Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorophyll degradation. — Physiol. Plant. 85: 85–89, 1992.CrossRefGoogle Scholar
  47. Surasak, S., Samuel, T., Desh-Pal, S.V., Richard, T.S.: Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. — Plant Cell 14: 2837–2847, 2002.CrossRefGoogle Scholar
  48. Taylor, M.D.: Accumulation of cadmium derived from fertilizers in New Zealand soils. — Sci. total Environ. 208: 123–126, 1997.CrossRefPubMedGoogle Scholar
  49. Warren, C.R., Adams, M.A., Chen, Z.: Is photosynthesis related to concentrations of nitrogen and Rubisco in leaves of Australian native plants? — Aust. J. Plant Physiol. 27: 407–416, 2000.Google Scholar
  50. Wildner, G.F., Henkel, J.: The effect of divalent metal ion on the activity of Mg2+-depleted ribulose-1,5-bisphosphate oxygenase. — Planta 146: 223–228, 1979.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Radioisotope DepartmentAtomic Energy AuthorityCairoEgypt
  2. 2.Agriculture Botany Department, Faculty of AgricultureMonofya UniversityMonofyaEgypt

Personalised recommendations