Biologia Plantarum

, Volume 54, Issue 2, pp 265–271 | Cite as

Production and selection of marker-free transgenic plants of Petunia hybrida using site-specific recombination

  • R. S. Khan
  • I. Nakamura
  • M. Mii
Original Papers


MAT (multi-auto-transformation) vector system has been one of the strategies to excise the selection marker gene from transgenic plants. Agrobacterium tumefaciens strain EHA105 harboring an ipt-type MAT vector, pNPI132, was used to produce morphologically normal transgenic Petunia hybrida ‘Dainty Lady’ employing isopentenyl transferase (ipt) gene as the selection marker gene. β-glucuronidase (GUS) gene was used as model gene of interest. Infected explants were cultured on Murashige and Skoog (MS) medium without plant growth regulators (PGR) and antibiotics. Shoots showing extreme shooty phenotype (ESP) were produced from the adventitious shoots separated from the explants. Visual selection was carried out until production of morphologically normal shoots (approximately 4 months after infection). Histochemical GUS assay detected GUS gene in both ESP and normal shoots. PCR analysis confirmed the presence of model gene (GUS gene) and excision of the selection marker (ipt) gene in the normal transgenic plants. The insertion sites (1–3 for ipt gene and 1–2 for GUS gene) were detected by Southern blot analysis using DIG-labeled probes of both genes. These results show that ipt-type MAT vector can be used successfully to produce marker-free transgenic Petunia hybrida plants on PGR- and antibiotic-free MS medium.

Additional key words

extreme shooty phenotype GUS gene ipt gene MAT vector PCR Southern blot transformation 









polymerase chain reaction


plant growth regulator


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to Dr. H. Ebinuma, Pulp and Paper Research, Nippon Paper Industries, Tokyo, for providing the MAT vector constructs.


  1. Ainley, W.M., McNeil, K.J., Hill, J.W., Lingle, W.L., Simpson, R.B., Brenner, M.L., Nagao, R.T., Key, J.L.: Regulatable endogenous production of cytokinins up to toxic levels in transgenic plants and plant tissues. — Plant mol. Biol. 22: 13–23, 1993.CrossRefPubMedGoogle Scholar
  2. Akiyoshi, D.E., Klee. H., Amasino, R.M., Nester, E.W., Gordon, M.P.: T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. — Proc. nat. Acad. Sci. USA. 81: 5994–5998, 1984.CrossRefPubMedGoogle Scholar
  3. Araki, H., Jearnpipatkul, A., Tatsumi, H., Sakurai, T., Ushino, K., Muta, T., Oshima, Y.: Molecular and functional organization of yeast plasmid pSR1. — J. mol. Biol. 182: 191–203, 1987.CrossRefGoogle Scholar
  4. Ballester, R., Cervera, M., Peña, L.: Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination. — Plant Cell Rep. 26: 39–45, 2007.CrossRefPubMedGoogle Scholar
  5. Dervinis, C., Clark, D.G., Klee, H.I., Barrett, J.E., Nell, T.A.: Prevention of leaf senescence via genetic transformation with sag-IPT. — Proc. Florida State hort. Soc. annu. Meetings 111: 12–15, 1999.Google Scholar
  6. Ebinuma, H., Sugita, K., Matsunaga, E., Yamakado, M.: Selection of marker-free transgenic plants using the isopentenyl transferase gene. — Proc. nat. Acad. Sci. USA 94: 2117–2121, 1997.Google Scholar
  7. Ebinuma, H., Komamine, A.: MAT (multi-auto-transformation) vector system. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. — In Vitro cell. dev. Biol. Plant 37: 103–113, 2001.CrossRefGoogle Scholar
  8. Endo, S., Kasahara, T., Sugita, K., Ebinuma, H.: A new GSTMAT vector containing both ipt and iaaM/H genes can produce marker-free transgenic tobacco plants with higher frequency. — Plant Cell Rep. 20: 923–928, 2002.CrossRefGoogle Scholar
  9. Hobbs, S.L.A., Warkentin, T.D., Delong, C.M.O.: Transgene copy number can be positively or negatively associated with transgene expression. — Plant mol. Biol. 21: 17–26, 1993.CrossRefPubMedGoogle Scholar
  10. Jefferson, R.A.: Assaying chimeric genes in plants: the GUS gene fusion system. — Plant mol. Biol. Rep. 5: 387–405, 1987.CrossRefGoogle Scholar
  11. John, M.C., Amasino, R.M.: Extensive change in DNA methylation patterns accompanies activation of a silent T-DNA ipt-gene in Agrobacterium tumefaciens-transformed plant cells. — Mol. cell. Biol. 9: 4298–4303, 1989.PubMedGoogle Scholar
  12. Khan, R.S., Chin, D.P., Nakamura, I., Mii, M.: Production of marker-free Nierembergia caerulea using MAT vector system. — Plant Cell Rep. 25: 914–919, 2006.CrossRefPubMedGoogle Scholar
  13. Klee, H., Horsch, R., Rogers, S.: Agrobacterium-mediated plant transformation and its further applications to plant biology. — Annu. Rev. Plant Physiol. 38: 467–486, 1987.CrossRefGoogle Scholar
  14. Kunkel, T., Niu, Q.W., Chan, Y.S., Chua, N.H.: Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. — Nat. Biotechnol. 17: 916–919, 1999.CrossRefPubMedGoogle Scholar
  15. Matsunaga, E., Sugita, K., Ebinuma, H.: Asexual production of selectable-marker free transgenic woody plants, vegetatively propagated species. — Mol. Breed. 10: 95–106, 2002.CrossRefGoogle Scholar
  16. McCabe, M.M., Power, J.B., de Laat, A.M.M., Davey, M.R.: Detection of single copy genes in DNA from transgenic plants by non-radioactive Southern blot analysis. — Mol. Biotechnol. 7: 79–84, 1997.CrossRefPubMedGoogle Scholar
  17. Mette, M.F., Aufsat, Z.W., van der Winden, J., Matzke, M.A., Matzke, A.J.M.: Transcriptional silencing and promoter methylation triggered by double-stranded RNA. — EMBO J. 19: 5194–5201, 2000.CrossRefPubMedGoogle Scholar
  18. Mette, M.F., Van der Winden, J., Matzke, M.A., Matzke, A.J.M.: Production of aberrant promoter transcripts contributes to methylation and silencing of unlinked homologous promoters in trans. — EMBO J. 18: 241–248, 1999.CrossRefPubMedGoogle Scholar
  19. Minlong, C., Takayanagi, K., Kamada, H., Nishimura, S., Handa, T.: Transformation of Antirrhinum majus L. by a rol-type multi-auto-transformation (MAT) vector system. — Plant Sci. 159: 273–280, 2000.CrossRefPubMedGoogle Scholar
  20. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  21. Onouchi, H., Yokoi, K., Machida, C., Matsuzaki, H., Oshima, Y., Matsuoka, K., Nakamura, K., Machida, Y.: Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. — Nucl. Acids Res. 19: 6373–6378, 1991.CrossRefPubMedGoogle Scholar
  22. Rogers, O.S., Bendich, J.A.: Extraction of DNA from plant tissues. — In: Gelvin, S.B., Schiliperoort, R.A., Verma, D.P.S. (ed): Plant Molecular Biology Manual. A6: 1–10. Kluwer Academic Publishers, Dordrecht — Boston — London 1988.Google Scholar
  23. Schaart, J.G., Krens, F.A., Pelgrom, K.T.B., Mendes, O., Rouwendal, G.J.A.: Effective production of marker-free transgenic strawberry plants using inducible site-specific recombination and a bifunctional selectable marker gene. — Plant Biotech. J. 2: 233–240, 2004.CrossRefGoogle Scholar
  24. Smigocki, A.C., Owens, L.D.: Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. — Proc. nat. Acad. Sci. USA 85: 5131–5135, 1988.CrossRefPubMedGoogle Scholar
  25. Sugita, K., Matsunaga, E., Ebinuma, H.: Effective selection system for generating marker-free transgenic plants independent of sexual crossing. — Plant Cell Rep. 18: 941–947, 1999.CrossRefGoogle Scholar
  26. Sugita, K., Matsunaga, E., Kasahara, T., Ebinuma, H.: Transgene stacking in plants in the absence of sexual crossing. — Mol. Breed. 6: 529–536, 2000.CrossRefGoogle Scholar
  27. Zelasco, S., Ressegotti, V., Confalonieri, M., Carbonera, D., Calligari, P., Bonadei, M., Bisoffi, S., Yamada, K., Balestrazzi, A.: Evaluation of MAT-vector system in white poplar (Populus alba L.) and production of ipt marker-free transgenic plants by ’single-step transformation’. — Plant Cell Tissue Organ Cult. 91: 61–72, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Laboratory of Plant Cell Technology, Graduate School of HorticultureChiba UniversityChibaJapan

Personalised recommendations