Advertisement

Biologia Plantarum

, Volume 54, Issue 1, pp 41–46 | Cite as

Molecular cloning and characterization of a novel microsomal oleate desaturase gene DiFAD2 from Davidia involucrata Baill

  • N. Lei
  • S. Peng
  • B. Niu
  • J. Chen
  • J. Zhou
  • L. Tang
  • Y. Xu
  • S. Wang
  • F. Chen
Original Papers

Abstract

In the conversion of oleic acid to linoleic acid, δ12-fatty acid desaturase (δ12-FAD) is involved. Based on the conserved oligo amino acid residues of the FAD2 genes from other plants, a new full-length cDNA (DiFAD2) encoding a δ12-FAD was cloned from Davidia involucrata Baill. Sequence analysis indicated that the DiFAD2 gene had an open reading frame (ORF) of 1 149 bp, coding for 382 amino acids residues of 44.3 kDa, pI of the deduced protein was 8.8. The deduced amino acid sequence of the cloned DiFAD2 showed high identities to those genes of other plant δ12-FAD. RT-PCR showed that DiFAD2 was expressed in all tissues and expression was abundant in young stems. Expression of DiFAD2 is not enhanced by low temperature and the altered polyunsaturated fatty acid content in leaves treated with low temperature may be due to the post-transcriptional regulation of the DiFAD2 gene or the other FAD2 gene family regulation.

Additional key words

amino acid residues open reading frame Saccharomyces cerevisiae 

Abbreviations

DiFAD2

Davidia involucrata δ12-fatty acid desaturase

Di18S rRNA

Davidia involucrata 18S rRNA

ORF

open reading frame

PCR

polymerase chain reaction

Mr

molecular mass

RACE

rapid amplification of cDNA ends

RT-PCR

reverse transcriptase-polymerase chain reaction

PUFA

polyunsaturated fatty acids

ER

endoplasmic reticulum

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the national infrastructure of national resources for science and technology (2005DKA21403).

References

  1. Browse, J., Xin, Z.: Temperature sensing and cold acclimation. — Curr. Opin. Plant Biol. 4: 241–246, 2001.CrossRefPubMedGoogle Scholar
  2. Georgios, B., Anastassios, M., Nikos, N., Polydefkis, H.: Spatial and temporal expressions of two distinct oleate desaturases from olive (Olea europaea L.). — Plant Sci. 168: 547–555, 2005.CrossRefGoogle Scholar
  3. Heppard, E.P., Kinney, A.J., Stecca, K.L., Miao, G.H.: Developmental and growth temperature regulation of two different microsomal ω-6 desaturase genes in soybeans. — Plant Physiol 110: 311–319, 1996.CrossRefPubMedGoogle Scholar
  4. Jung, S., Powell, G., Moore, K., Abbott, A.: The high oleate trait in the cultivated peanut (Arachis hypogaea L.). II. Molecular basis and genetics of the trait. — Mol. gen. Genet. 263: 806–811, 2000.CrossRefPubMedGoogle Scholar
  5. Li, L.Y, Wang, X.L., Gai, J.Y., Yu, D.Y.: Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. — J. Plant Physiol. 164: 1516–1526, 2006.CrossRefPubMedGoogle Scholar
  6. Liu, Q., Singh, S.P., Brubaker, C.L., Green, A.G.: Cloning and sequence analysis of a novel member of the microsomal ω-6 fatty acid desaturase family from cotton (Gossypium hirsutum L.). — Plant Physiol 120: 339–340, 1999.CrossRefGoogle Scholar
  7. Mariya, K., Richard, M., Peters, J., Wu, H.Y.L.: Enhanced cold tolerance in transgenic tobacco expressing a chloroplast ω-3 fatty acid desaturase gene under the control of a cold-inducible promoter. — Planta 223: 1090–1100, 2006.CrossRefGoogle Scholar
  8. Martínez-Rivas, J.M., Sperling, P., Lühs, W., Heinz, E.: Spatial and temporal regulation of three different microsomal oleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower (Helianthus annuus L.). — Mol. Breed. 8:159–168, 2001.CrossRefGoogle Scholar
  9. McCartney, A.W., Dyer, J.M., Dhanoa, P.K., Kim, P.K., Andrews, D.W., McNew, J.A., Mullen, R.T.: Membranebound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini. — Plant J. 37: 156–173, 2004.CrossRefPubMedGoogle Scholar
  10. Nakamura, M.T., Cheon, Y., Li, Y., Nara, T.Y.: Mechanisms of regulation of gene expression by fatty acids. — Lipids 39: 1077–1083, 2004.CrossRefPubMedGoogle Scholar
  11. Niu, B., Ye, H.X., Xu, Y., Wang, S.H., Peng, S.M., Ou, Y.C., Tang, L., Chen, F.: Cloning and characterization of a novel δ12-fatty acid desaturase gene from the tree Sapium sebiferum. — Biotechnol. Lett, 29: 1573–6776, 2007.Google Scholar
  12. Okuley, J., Lightner, J., Feldmann, K., Yadav, N., Lark, E., Browse, J.: Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. — Plant Cell 6: 147–158, 1994.CrossRefPubMedGoogle Scholar
  13. Peng, S.M., Luo, T., Zhou, J.Y., Niu, B., Lei, N.F., Tang, L., Chen, F.: Cloning and quantification of expression levels of two MADS-box genes from Momordica charantia. — Biol. Plant. 52: 222–230, 2008.CrossRefGoogle Scholar
  14. Pirtle, I.L., Kongcharoensuntorn, W., Nampaisansuk, M., Knesek, J.E., Chapman, K.D., Pirtle, R.M.: Molecular cloning and functional expression of the gene for a cotton δ12-fatty acid desaturase (FAD2). — Biochim. biophys. Acta 1522: 122–129, 2001.PubMedGoogle Scholar
  15. Sakai, H., Kajiwara, S.: Cloning and functional characterization of a δ12 fatty acid desaturase gene from the basidiomycete Lentinula edodes. — Mol. Genet.Genomics 273: 336–341, 2005.CrossRefPubMedGoogle Scholar
  16. Sakuradani, E., Kobayashi, M., Ashikari, T., Shimizu, S.: Identification of δ12-fatty acid desaturase from arachidonic acid-producing Mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. — Eur. J. Biochem. 261: 812–820, 1999.CrossRefPubMedGoogle Scholar
  17. Tao, F., Zhu, S.W., Fan, J.: Cloning and sequence analysis of maize FAD2 gene. — J. Plant Physiol. mol. Biol. 6: 649–656, 2006.Google Scholar
  18. Thelen, J.J., Ohlrogge, J.B.: Metabolic engineering of fatty acid biosynthesis in plants. — Metabolic Eng. 4: 12–21, 2002.CrossRefGoogle Scholar
  19. Tonon, T., Harvey, D., Qing, R.W., Li, Y., Larson, T.R., Graham, I.A.: Identification of a fatty acid δ11-desaturase from the microalga Thalassiosira pseudonana. — FEBS Lett. 563: 28–34, 2004.CrossRefPubMedGoogle Scholar
  20. Tonon, T., Harvey, D., Larson, T.R., Graham, I.A.: Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. — Phytochemistry 61: 15–24, 2002.CrossRefPubMedGoogle Scholar
  21. Wei, D.S., Li, M.C., Zhang, X.X., Ren, Y., Xing, L.J: Identification and characterization of a novel δ12-fatty acid desaturase gene from Rhizopus arrhizus. — FEBS Lett. 573: 45–50, 2004.CrossRefPubMedGoogle Scholar
  22. Williams, J.P., Khan, M.U., Wong, D.: Fatty acid desaturation in monogalactosyl diacylglycerol of Brassica napus leaves during low temperature acclimation. — Plant Physiol. 6: 258–262, 1996.Google Scholar
  23. Zhang, R., Zheng, Y.F., Wu, Y., Wang, S.H., Chen, F.: A simple and efficient method for preparation of plant RNAs. — Hereditas 28: 583–584, 2006.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • N. Lei
    • 1
    • 2
  • S. Peng
    • 1
    • 2
  • B. Niu
    • 1
  • J. Chen
    • 3
  • J. Zhou
    • 1
  • L. Tang
    • 1
  • Y. Xu
    • 1
  • S. Wang
    • 1
  • F. Chen
    • 1
  1. 1.School of Life ScienceSichuan UniversityChengduP.R. China
  2. 2.Department of BioengineringChengdu University of TechnologyChengduP.R. China
  3. 3.Chengdu Institute of BiologyChinese Academy of ScienceChengduP.R. China

Personalised recommendations