Skip to main content
Log in

The promoter-elements of some abiotic stress-inducible genes from cereals interact with a nuclear protein from tobacco

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

In this communication, we report the binding of abscisic acid responsive elements (ABREs) of rice Osem, namely motif A and motif B, with a cognate trans-acting factor present in the nuclear extract of tobacco leaf. The binding is specific as both the complexes were disrupted with an excess of homologous non-radioactive DNA like motif A or motif B themselves or with cis-elements of rice Rab16A, motif I (ABRE) and motif IIa (non-ACGT ABRE-like sequences). Four tandem repeats of ABRE from wheat Em (4X ABRE) or two tandem repeats of Em ABRE, plus two copies of coupling element (CE1) from barley HVA22 (2X ABRC), also showed specific complexes, that were competed out by an excess of homologous competitors like motif I, motif IIa, motif A, motif B, 4X ABRE and 2X ABRC, but not by the unrelated 4X DRE sequence. Elution of the protein from all the complexes showed a single 26 kDa polypeptide band. Introgression of two of the above synthetic promoters 4X ABRE and 2X ABRC, each fused with minimal promoter of cauliflower mosaic virus 35S (CaMV 35S), could induce the expression of the reporter gene β-glucuronidase (gus) in transgenic tobacco in response to high NaCl concentration, dehydration or abscisic acid, but not at the constitutive level, proving that they can be used as efficient stress-inducible promoters. Our work shows both in vivo and in vitro activity of the promoters from monocot genes in the model dicot plant tobacco.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABRE:

abscisic acid responsive element

ABRC:

abscisic acid responsive complex

CaMV 35S:

cauliflower mosaic virus 35S

CE:

coupling element

DRE:

dehydration responsive element

EMSA:

electrophoretic mobility shift assay

gus :

β-glucuronidase gene

PEG:

polyethylene glycol

References

  • An, G.: Binary ti vectors for plant transformation and promoter analysis. — Methods Enzymol. 153: 292–293, 1987.

    Article  CAS  Google Scholar 

  • Blum, H., Beier, H., Gross, H.J.: Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gel. — Electrophoresis 8: 93–99, 1987.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Busk, P.K., Pages, M.: Regulation of abscisic acid-induced transcription. — Plant mol. Biol. 37: 425–435, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Cherian, S., Reddy, M.P., Ferreira, R.B.: Transgenic plants with improved dehydration-stress tolerance: progress and future prospects. — Biol. Plant. 50: 481–495, 2006.

    Article  CAS  Google Scholar 

  • Cousson, A.: Involvement of phospholipase C-independent calcium-mediated abscisic acid signalling during Arabidopsis response to drought. — Biol. Plant. 53: 53–62, 2009.

    Article  CAS  Google Scholar 

  • Furtado, A., Henry, R.J.: The wheat Em promoter drives reporter gene expression in embryo and aleurone tissue of transgenic barley and rice. — Plant Biotechnol. J. 3: 421–434, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Guiltinan, M.J., Marcotte, W.R., Jr., Quatrano, R.S.: A plant leucine zipper protein that recognizes an abscisic acid response element. — Science 250: 267–271, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Hattori, T., Terada, T., Hamasuna, S.: Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. — Plant J. 7: 913–925, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Hattori, T., Totsuka, M., Hobo, T., Kagaya, Y., Yamamoto-Toyoda, A.: Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. — Plant Cell Physiol. 43: 136–140, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Hobo, T., Asada, M., Kowyama, Y., Hattori, T.: ACGTcontaining abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. — Plant J. 19: 679–689, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Huang, C., Guo, T., Zheng, S.C., Feng, Q.L., Liang, J.H., Li, L.: Increased cold tolerance in Arabidopsis thaliana transfromed with Choristoneura fumiferana glutahione Strasferase gene. — Biol. Plant. 53: 183–187, 2009.

    Article  CAS  Google Scholar 

  • Ishige, F., Takaichi, M., Foster, R., Chua, N.H., Oeda, K.: A Gbox motif (GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants. — Plant J. 18: 443–448, 1999.

    Article  CAS  Google Scholar 

  • Katagiri, F., Lam, E., Chua, N.H.: Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. — Nature 340: 727–730, 1989.

    Article  CAS  PubMed  Google Scholar 

  • Kosova, K., Vitámvás, P., Prášil, I.T.: The role of dehydrins in plant response to cold. — Biol. Plant. 51: 601–617, 2007.

    Article  CAS  Google Scholar 

  • Longhurst, T., Lee, E., Hinde, R., Brady, C., Speirs, J.: Structure of the tomato Adh2 gene and Adh2 pseudogenes, and a study of Adh2 gene expression in fruit. — Plant mol. Biol. 26: 1073–1084, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Marcotte, W.R., Jr., Russell, S.H., Quatrano, R.S.: Abscisic acid-responsive sequences from the em gene of wheat. — Plant Cell 1: 969–976, 1989.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, K., Choudhury, A.R., Gupta, B., Gupta, S., Sengupta, D.N.: An ABRE-binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice. — BMC Plant Biol. 6: 18, 2006.

    Article  PubMed  Google Scholar 

  • Mundy, J., Chua, N.H.: Abscisic acid and water-stress induce the expression of a novel rice gene. — EMBO J. 7: 2279–2286, 1988.

    CAS  PubMed  Google Scholar 

  • Nakagawa, H., Ohmiya, K., Hattori, T.: A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. — Plant J. 9: 217–227, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Nantel, A., Quatrano, R.S.: Characterization of three rice basic/leucine zipper factors, including two inhibitors of EmBP-1 DNA binding activity. — J. biol. Chem. 271: 31296–31305, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Oeda, K., Salinas, J., Chua, N.H.: A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. — EMBO J. 10: 1793–1802, 1991.

    CAS  PubMed  Google Scholar 

  • Ono, A., Izawa, T., Chua, N.H., Shimamoto, K.: The rab16B promoter of rice contains two distinct abscisic acidresponsive elements. — Plant Physiol. 112: 483–491, 1996.

    Article  CAS  PubMed  Google Scholar 

  • RoyChoudhury, A., Roy, C., Sengupta, D.N.: Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. — Plant Cell Rep. 26: 1839–1859, 2007.

    Article  CAS  PubMed  Google Scholar 

  • RoyChoudhury, A., Gupta, B., Sengupta, D.N.: Trans-acting factor designated OSBZ8 interacts with both typical abscisic acid responsive elements as well as abscisic acid responsive element-like sequences in the vegetative tissues of indica rice cultivars. — Plant Cell Rep. 27: 779–794, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook, J., Russell, D.W.: Molecular Cloning: A Laboratory Manual. 3rd Ed. — Cold Spring Harbor Laboratory Press, Cold Spring Harbor 2001.

    Google Scholar 

  • Shen, Q., Ho, T.H.D.: Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABAresponsive complexes, each containing a G-box and a novel cis-acting element. — Plant Cell 7: 295–307, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Shen, Q., Zhang, P., Ho, T.H.D.: Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. — Plant Cell 8: 1107–1119, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Singh, K.B.: Transcriptional regulation in plants: the importance of combinatorial control. — Plant Physiol. 118: 1111–1120, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Skriver, K., Olsen, F.L., Rogers, J.C., Mundy, J.: Cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. — Proc. nat. Acad. Sci. USA. 88: 7266–7270, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki, K., Mundy, J., Chua, N.H.: Four tightly linked rab genes are differentially expressed in rice. — Plant mol. Biol. 14: 29–39, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki, K., Shinozaki, K.: A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. — Plant Cell 6: 251–264, 1994.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Roychoudhury.

Additional information

Acknowledgement: This work was financially supported by the Department of Biotechnology, Government of India, New Delhi (Grant No. BT/PR2965/AGR/02/155/04/2002).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roychoudhury, A., Sengupta, D.N. The promoter-elements of some abiotic stress-inducible genes from cereals interact with a nuclear protein from tobacco. Biol Plant 53, 583–587 (2009). https://doi.org/10.1007/s10535-009-0106-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-009-0106-z

Additional key words

Navigation