Skip to main content
Log in

Abscisic acid and auxin accumulation in Catasetum fimbriatum roots growing in vitro with high sucrose and mannitol content

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

Endogenous contents of indolyl-3-acetic acid (IAA) and abscisic acid (ABA) were quantified in excised roots of Catasetum fimbriatum (Orchidaceae) cultured in vitro on solidified Vacin and Went medium with 1, 2, 4, 6, 8 and 10 % sucrose, as well as 2 % sucrose plus mannitol. Maximum root growth was observed in media with 4 % sucrose and 2 % sucrose plus 2.2 % mannitol, suggesting that a moderate water or osmotic stress promotes orchid root growth. Contents of both ABA and IAA increased in parallel to increasing sucrose concentration and a correlation between root elongation and the ABA/IAA ratio was observed. Incubating isolated C. fimbriatum roots with radiolabeled tryptophan, we showed an accumulation of IAA and its conjugates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

ELISA:

enzyme linked immunosorbent assay

HPLC:

high performance liquid chromatography

IAA:

indole-3-acetic acid

References

  • Belefant, H., Fong, F.: Abscisic acid ELISA: organic acid interference. — Plant Physiol. 91: 1467–1470, 1989.

    Article  CAS  PubMed  Google Scholar 

  • Benzing, D.H.: Aerial roots and their environments. — In: Waiser, Y., Eshe, A., Kafkafi, U. (ed.): Plant Roots: the Hidden Half. Pp. 875–894. Marcel Dekker, New York 1996.

    Google Scholar 

  • Brady, S.M., Sarkar, S.F., Bonetta, D., McCourt, P.: The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. — Plant J. 34: 67–75, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Colli, S., Kerbauy, G.B.: Direct root tip conversion of Catasetum into protocorm-like bodies. Effects of auxin and cytokinin. — Plant Cell Tissue Organ Cult 33: 39–44, 1993.

    Article  CAS  Google Scholar 

  • Feldman, L.: Auxin biosynthesis and metabolism in isolated roots of Zea mays. — Physiol. Plant. 49: 145–150, 1980.

    Article  Google Scholar 

  • Gonçalves, S., Romano, A.: In vitro minimum growth for conservation of Drosophyllum lusitanicum. — Biol. Plant. 51:795–798, 2007.

    Article  Google Scholar 

  • Grossmann, K., Scheltrup, F., Kwiatkowski, J., Gaspar, G.: Induction of abscisic acid is a common effect of auxin herbicides in susceptible plants. — J. Plant Physiol. 149: 475–478, 1996.

    CAS  Google Scholar 

  • Kerbauy, G.B.: The effects of sucrose and agar on the formation of protocorm-like bodies in recalcitrant root tip meristems of Oncidium varicosum Lindl. — Lindleyana 8: 149–154, 1993.

    Google Scholar 

  • Ljung, K., Hull, A.K., Celenza, J., Yamada, M., Estelle, M., Normanly, J., Sandberg, G.: Sites and regulation of auxin biosynthesis in Arabidopsis roots. — Plant Cell 17: 1090–1104, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Madhulatha, P., Kirubakaran, S.I., Sakthivel, N.: Effects of carbon sources and auxins on in vitro propagation of banana. — Biol. Plant. 50: 782–784, 2006.

    Article  CAS  Google Scholar 

  • Maldiney, R., Leroux, B., Sabbaghi, I., Sotta, B., Sossountzov, L., Miginiac, E.: A biotin-avidin-based enzyme immunoassay to quantify three phytohormones: auxin, abscisic acid, and zeatin riboside. — J. Immunol. Methods 90: 151–158, 1986.

    Article  CAS  Google Scholar 

  • Mingozzi, M., Morini, S.: In vitro cultivation of donor quince shoots affects subsequent morphogenesis in leaf explants. — Biol. Plant. 53: 141–144, 2009.

    Article  Google Scholar 

  • Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Normanly, J., Slovin, J.P., Cohen, J.D.: Rethinking auxin biosynthesis and metabolism. — Plant Physiol. 107: 323–329, 1995.

    CAS  PubMed  Google Scholar 

  • Patel, D., Thaker, V.S.: Estimation of endogenous contents of phytohormones during internode development in Merremia emarginata. — Biol. Plant. 51: 75–79, 2007.

    Article  CAS  Google Scholar 

  • Peres, L.E.P., Amar, S., Kerbauy, G.B., Salatino, A., Zaffari, G.R., Mercier, H.: Effects of auxin, cytokinin and ethylene treatments on the endogenous ethylene and auxin-tocytokinin ratio related to direct root tip conversion of Catasetum fimbriatum Lindl. (Orchidaceae) into buds. — J. Plant Physiol. 155: 551–555, 1999.

    CAS  Google Scholar 

  • Peres, L.E.P., Kerbauy, G.B.: High cytokinin accumulation following root tip excision changes the endogenous auxin to cytokinin ratio during root-to-shoot conversion in Catasetum fimbriatum Lindl. (Orchidaceae). — Plant Cell Rep. 18: 1002–1006, 1999.

    Article  CAS  Google Scholar 

  • Peres, L.E.P., Majerowicz, N., Kerbauy, G.B.: Dry matter partitioning differences between shoots and roots in two contrasting genotypes of orchids and their relationship with endogenous levels of auxins, cytokinins and abscisic acid. — Braz. J. Plant Physiol. 13: 185–195, 2001.

    Google Scholar 

  • Peres, L.E.P., Mercier, H., Kerbauy, G.B., Zaffari, G.R.: [Endogenous levels of IAA, cytokinins and ABA in a shootless orchid and a rootless bromeliad determined by means of HPLC and ELISA.] — Braz. J. Plant Physiol. 9: 169–176, 1997. [In Portuguese]

    CAS  Google Scholar 

  • Pilet, P.E., Elliott, M.C., Moloney, M.M.: Endogenous and exogenous auxin in the control of root growth. — Planta 146: 405–408, 1979.

    Article  CAS  Google Scholar 

  • Pilet, P.E., Saugy, M.: Effect of root growth of endogenous and applied AIA and ABA. A critical reexamination. — Plant Physiol. 83: 33–38, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Pritchard, J.: The control of cell expansion in roots. — New Phytol. 127: 3–26, 1994.

    Article  CAS  Google Scholar 

  • Ribaut, J.M., Pilet, P.E.: Effect of water stress on growth osmotic potential and abscisic acid content of maize roots. — Physiol. Plant. 81: 156–162, 1991.

    Article  CAS  Google Scholar 

  • Ribaut, J.M., Pilet, P.E.: Water stress and indol-3yl-acetic acid content of maize roots. — Planta 193: 502–507, 1994.

    Article  CAS  Google Scholar 

  • Ribaut, J.M., Schaerer, S., Pilet, P.E.: Deuterium-labeled indole-3-acetic acid neo-synthesis in plantlets and excised roots of maize. — Planta 189: 80–82, 1993.

    Article  CAS  Google Scholar 

  • Saab, I.N., Sharp, Q.E., Pritchard, J., Voetberg, G.S.: Increased endogenous abscisic acid maintains primary root growth and inhibits shoot growth of maize seedlings of low water potentials. — Plant Physiol. 93: 1329–1336, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Sanford, W.W.: The ecology of orchids. — In: Withner, C.L. (ed.): The Orchids: Scientific Studies. Pp. 1–100. John Wiley & Sons, New York 1974.

    Google Scholar 

  • Sharp, R.E., Wu, Y., Voetberg, G.S., Saab, I.N., LeNoble, M.E.: Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. — J. exp. Bot. 45: 1743–1751, 1994.

    CAS  Google Scholar 

  • Spollen, W.G., LeNoble, M.E., Samuels, T.D., Bernstein, N., Sharp, R.E.: Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. — Plant Physiol. 122: 967–976, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Stoop, J.M.H., Williamson, J.D., Pharr, D.M.: Mannitol metabolism in plants: a method for coping with stress. — Trends Plant Sci. 1: 139–144, 1996.

    Article  Google Scholar 

  • Suzuki, M., Dao, C.-Y., Cocciolone, S., McCarty, D.R.: Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots. — Plant J. 28: 409–418, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Vacin, E.F., Went, F.W.: Some pH changes in nutrient solutions. — Bot. Gaz. 110: 605–617, 1949.

    Article  CAS  Google Scholar 

  • Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., Zhu, J.-K.: Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. — Plant J. 45: 523–539, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Vinterhalter, B., NinkoviĆ, S., Cingel, A., Vinterhalter, D.: Shoot and root culture of Hypericum perforatum L. transformed with Agrobacterium rhizogenes A4M70GUS. — Biol. Plant. 50: 767–770, 2006.

    Article  Google Scholar 

  • Walton, D.C., Harrison, M.A., Cotê, P.: The effects of water stress on abscisic-acid levels and metabolism in roots of Phaseolus vulgaris L. and other plants. — Planta 131: 141–144, 1976.

    Article  CAS  Google Scholar 

  • Wotavová-Novotná, K., Vejsadová, H., Kindlmann, P.: Effects of sugars and growth regulators on in vitro growth of Dactylorhiza species. — Biol. Plant. 51: 198–200, 2007.

    Article  Google Scholar 

  • Xin, Z.-Y., Zhou, Z., Pilet, P.E.: Level changes of jasmonic, abiscisic, and indole-3yl-acetic acids in maize under desiccation stress. — J. Plant Physiol. 151: 120–124, 1997.

    CAS  Google Scholar 

  • Zaffari, G.R., Peres, L.E.P., Kerbauy, G.B.: Endogenous levels of cytokinins, IAA, ABA and pigments in variegated somaclones of micropropagated banana leaves. — J. Plant Growth Regul. 17: 59–61, 1998.

    Article  CAS  Google Scholar 

  • Zaffari, G.R., Peres, L.E.P., Tcacenco, F.A., Kerbauy, G.B.: Indole-3-acetic acid metabolism in normal and dwarf micropropagated banana plants (Musa spp. AAA). — Braz. J. of Plant Physiol. 14: 211–217, 2002.

    CAS  Google Scholar 

  • Zhang, J., Davies, W.J.: Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. — Plant Cell Environ. 12: 73–81, 1989.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. P. Peres.

Additional information

Acknowledgements: We thank FAPESP and CNPq (Brazil) for financial support and Dr. B. Sotta (Université Paris VI) for the donation of the antibodies and conjugates for ELISA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peres, L.E.P., Zsögön, A. & Kerbauy, G.B. Abscisic acid and auxin accumulation in Catasetum fimbriatum roots growing in vitro with high sucrose and mannitol content. Biol Plant 53, 560–564 (2009). https://doi.org/10.1007/s10535-009-0101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-009-0101-4

Additional key words

Navigation