Biologia Plantarum

, Volume 53, Issue 1, pp 145–150 | Cite as

Differential expression of LEA proteins in two genotypes of mulberry under salinity

  • G. Jyothsnakumari
  • M. Thippeswamy
  • G. Veeranagamallaiah
  • C. Sudhakar
Brief Communication


The relative water content (RWC), cell membrane integrity, protein pattern and the expression of late embryogenesis abundant proteins (LEA; group 1, 2, 3 and 4) under different levels of salt stress (0, 1.0, 1.5 and 2.0 % NaCl) were investigated in mulberry (Morus alba L.) cultivars (S1 and ATP) with contrasting salt tolerance. RWC and membrane integrity decreased with increase in NaCl concentration more in cv. ATP than in cv. S1. SDS-PAGE protein profile of mulberry leaves after the NaCl treatments showed a significant increase in 35, 41, 45 and 70 kDa proteins and significant decrease in 14.3, 18, 23, 28, 30, 42, 47 and 65 kDa proteins. Exposure of plants to NaCl resulted in higher accumulation of LEA proteins in S1 than ATP. The maximum content of LEA (group 3 and 4) was detected in S1 at 2.0 % NaCl, which correlates with its salt tolerance.

Additional key words

cell membrane stability Morus alba NaCl stress RWC 



abscisic acid




late embryogenesis abundant


pathogen related


responsive to ABA


sodium dodecyl sulfate polyacrylamide gel electrophoresis


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allagulova, C.H.R., Gimalov, F.R., Shakirova, F.M., Vahkhitov, V.A.: The plant dehydrins: structure and putative functions.-Biochemistry 68: 945–961, 2003.PubMedGoogle Scholar
  2. Ashraf, M., O’Leary, J.W.: Changes in soluble proteins in spring wheat stressed with sodium chloride.-Biol. Plant. 42: 113–117, 1999.CrossRefGoogle Scholar
  3. Bishnoi, S.K., Kumar, B., Rani, C., Datta, K.S., Kumari, P., Sheoran, I.S., Angrish, R.: Changes in protein profile of pigeonpea genotypes in response to NaCl and boron stress.-Biol. Plant. 50: 135–137, 2006.CrossRefGoogle Scholar
  4. Cheng, Z.Q., Targolli, J., Huang, X.Q., Wu, R.: Wheat LEA genes PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.).-Mol. Breed. 10: 71–82, 2002.CrossRefGoogle Scholar
  5. Cherian, S., Reddy, M.P., Ferreira, R.B.: Transgenic plants with improved dehydration stress tolerance: progress and future prospects.-Biol. Plant. 50: 481–495, 2006.CrossRefGoogle Scholar
  6. Close, T.J.: Dehydrins: a commonality in the response of plants to dehydration and low temperature.-Physiol. Plant. 100: 291–296, 1997.CrossRefGoogle Scholar
  7. De Souza Filho, G.A., Ferreira, B.S., Dias, J.M., Queiroz, K.S., Bressan-Smith, R.E., Oliveira, J.G., Garcia, A.B.: Accumulation of SALT protein in rice plants as a response to environmental stresses.-Plant Sci. 164: 623–628, 2003.CrossRefGoogle Scholar
  8. Duncan, D.M.: Multiple range and multiple tests.-Biometrics 42: 1–47, 1955.CrossRefGoogle Scholar
  9. Dure, L., Greeenway, S.C., Galau, G.A.: Developmental and biochemistry of cotton seed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vivo protein synthesis.-Biochemistry 20: 4162–4168, 1981.PubMedCrossRefGoogle Scholar
  10. Dure, L.: The LEA proteins of higher plants.-In: Verma, D.P.S. (ed.): Control of Plant Gene Expression. Pp. 325–369. CRC Press, Boca Raton 1992.Google Scholar
  11. Dure, L.: Structural motifs in LEA proteins of higher plants.-In: Close, T.J., Bray, E.A. (ed.): Response of Plants to Cellular Dehydration during Environmental Stress. Pp. 48–61. American Society of Plant Physiologists, Rockville 1993.Google Scholar
  12. Erturk, U., Sivritepe, N., Yerlikaya, C., Bor, M., Ozdemir, F., Turkan, I.: Responses of the cherry root stock to salinity in vitro.-Biol Plant. 51: 597–600, 2007.CrossRefGoogle Scholar
  13. Farooq, S., Azam, F.: The use of cell membrane stability (CMS) technique to screen for salt tolerant wheat varieties.-J. Plant Physiol. 163: 629–237, 2006.PubMedCrossRefGoogle Scholar
  14. Hoekstra, F.A., Golovina, E.A., Buitink, J.: Mechanisms of plant desiccation tolerance.-Trends Plant Sci. 6: 431–438, 2001.PubMedCrossRefGoogle Scholar
  15. Hsing, Y., Chen, Z., Shih, M., Chow, T.: Unusual sequence of group 3 LEA mRNA inducible by maturation or drying in soybean seeds.-Plant mol. Biol. 29: 863–868, 1995.PubMedCrossRefGoogle Scholar
  16. Hurkman, W.J., Tanaka, C., Fornari, C.: A comparison of the effects of salt on polypeptides and translatable mRNAs in the roots of a salt-tolerant and a salt-sensitive cultivar of barley.-Plant Physiol. 90: 1444–1456, 1989.PubMedCrossRefGoogle Scholar
  17. Jayaprakash, T.L., Ramamohan, G., Krishnaprasad, B.T., Kumar, G., Prasad. T.G., Mathew, M.K., Udaya Kumar, M.: Genotypic variability in differential expression of lea2 and lea3 genes and proteins in response to salinity stress in finger millet (Eleusine coracana Gaertn.) and rice (Oryza sativa L.) seedlings.-Ann. Bot. 82: 513–522, 1998.CrossRefGoogle Scholar
  18. Jyothsnakumari, G., Sudhakar, C.: Effects of jasmonic acid on groundnut during early seedling growth.-Biol. Plant. 47: 453–456, 2003/4.CrossRefGoogle Scholar
  19. Jyothsnakumari, G.: Studies on biochemical responses and proteome analysis of two high yielding genotypes of mulberry (Morus alba L.) with differential salt sensitivity.-Ph.D thesis, Sri Krishnadevaraya University, Anantapur, 2005.Google Scholar
  20. Kumari, G.J., Reddy, A.M., Naik, S.T., Kumar, S.G., Prasanthi, J., SriRanganayakulu, G., Reddy, P.C., Sudhakar, C.: Jasmonic acid induced changes in protein pattern, antioxidative enzyme activity and peroxidase isozyme in peanut (Arachis hypogaea L.) seedlings.-Biol. Plant. 50: 219–226, 2006.CrossRefGoogle Scholar
  21. Laemmli, U.K.: Cleavage of structural protein during the assembly of the head of the bacteriophage T4.-Nature 83: 90–94, 1970.Google Scholar
  22. Lowry, O.H., Rosenburg, N.J., Farr, A.L., Randall, R.J.: Protein measurement using folin phenol reagent.-J. biol. Chem. 193: 265–275, 1951.PubMedGoogle Scholar
  23. Majoul, T., Chahed, K., Zamiti, E., Ouelhazi, L., Ghir, R.: Analysis by two-dimensional electrophoresis of a salt-tolerant and a salt-sensitive cultivar of wheat.-Electrophoresis 21: 2562–2656, 2000.PubMedCrossRefGoogle Scholar
  24. Melgar, J.C., Syvertsen, J.P., Martínez, V., García-Sánchez, F.: Leaf gas exchange, water relations, nutrient content and growth in citrus and olive seedlings under salinity.-Biol. Plant. 52: 385–390, 2008.CrossRefGoogle Scholar
  25. Moons, A., Bauw, G., Prinsen, E., Van Montagu, M., Van der Straeten, D.: Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties.-Plant Physiol. 107: 177–186, 1995.PubMedCrossRefGoogle Scholar
  26. Moons, A., Gielen, J., Van der Kerckhove, J., Van der Straeten, D., Gheysen, G., Van Montagu, M.: An abscisic acid and salt stress responsive rice cDNA from a novel plant gene family.-Planta 202: 443–454, 1997a.PubMedCrossRefGoogle Scholar
  27. Moons, A., Prinsen, E., Bauw, G., Van Montagu, M.: Antagonistic effects of abscisic acid and jasmonates on salt stress inducible transcripts in rice roots.-Plant Cell. 9: 2243–2259, 1997b.PubMedCrossRefGoogle Scholar
  28. Moons, A., De Keyser, A., Van Montagu, M.: A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response.-Gene 191:197–204, 1997c.PubMedCrossRefGoogle Scholar
  29. Niknam, V., Razavi, N., Ebrahimzadeh, H., Sharifizadeh, B.: Effect of NaCl on biomass, protein and proline contents, and antioxidant enzymes in seedlings and calli of two Trigonella species.-Biol. Plant. 50: 594–596, 2006.CrossRefGoogle Scholar
  30. Ouerghi, Z., Remy, R., Ouelhazi, L., Ayadi, A., Brulfert, J.: Two-dimensional electrophoresis of soluble leaf proteins, isolated from two wheat species (Triticum durum and Triticum aestivum) in sensitivity towards NaCl.-Electrophoresis 21: 2487–2491, 2000.PubMedCrossRefGoogle Scholar
  31. Pareek, A., Singla, S.L., Grover, A.: Salt responsive proteins/genes in crop plants.-In: P.K. Jaiwal, R.P. Singh, A. (ed.): Strategies for Improving Salt Tolerance in Higher Plants. Pp. 365–391. Gulati Oxford and IBH Publication Co., New Delhi 1997.Google Scholar
  32. Premachandra, G.S., Saneoka, H., Kanaya, M., Ogata, S.: Cell membrane stability and leaf surface wax content as affected by increasing water deficits in maize.-J. exp. Bot. 42: 167–171, 1991.CrossRefGoogle Scholar
  33. Rorat, T.: Plant dehydrins. Tissue location, structure and function.-Cell mol. Biol. Lett. 11: 536–556, 2006.PubMedCrossRefGoogle Scholar
  34. Sairam, R.K., Rao, K.V., Srivastava, G.C.: Differential response of wheat genotypes to longterm salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration.-Plant Sci. 163: 1037–46, 2002.CrossRefGoogle Scholar
  35. Singh, N.K., Nelson, D.E., La Rosa, P.S., Bracker, C.E., Handa, A.K., Hasegawa, P.M., Bressan, R.A.: Osmotin: a protein associated with osmotic stress adaptation in plant cells.-In: Cherry, J.H. (ed.): Environmental Stress in Plants. Pp. 67–87. Springer-Verlag, Berlin 1989.Google Scholar
  36. Sotiropoulos, T.E.: Effect of NaCl and CaCl2 on growth and contents of minerals, chlorophyll, proline and sugars in the apple rootstock M4_cultured in vitro.-Biol. Plant. 51: 177–180, 2007.CrossRefGoogle Scholar
  37. Sudhakar, C., Lakshmi, A., Giridarakumar, S.: Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity.-Plant Sci. 161: 613–619, 2001.CrossRefGoogle Scholar
  38. Svensson, J., Ismail, A.M., Palva, E.T., Close, T.J.: Dehydrins.-In: Storey, K.B., Storey, J.M. (ed.): Sensing, Signaling and Cell Adaptation. Pp. 155–171. Elsevier Science, Amsterdam 2002.CrossRefGoogle Scholar
  39. Towbin, H., Staehelin, T., Gordon, J.: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets procedure and some applications.-Proc. nat. Acad. Sci. USA 76: 4350–4354, 1979.PubMedCrossRefGoogle Scholar
  40. Tripathi, S.B., Gurumurthy, K., Panigrahi, A.K., Shaw, B.P.: Salinity induced changes in proline and betaine contents and synthesis in two aquatic macrophytes differing in salt tolerance.-Biol. Plant. 51: 110–115, 2007.CrossRefGoogle Scholar
  41. Turner, N.C.: Techniques and experimental approaches for the measurement of plant water status.-Plant Soil 58: 339–366, 1981.CrossRefGoogle Scholar
  42. Uma, S., Prasad, T.G., Kumar, M.U.: Genetic variability in recovery growth and synthesis of stress proteins in response to polyethylene glycol and salt stress in finger millet.-Ann. Bot. 76: 43–49, 1995.CrossRefGoogle Scholar
  43. Wahid, A., Close, T.J.: Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves.-Biol. Plant. 51: 104–109, 2007.CrossRefGoogle Scholar
  44. Wise, M.J.: LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles.-BMC Bioinform. 4: 52, 2003.CrossRefGoogle Scholar
  45. Zhu, B., Chen, T.H., Li, P.H.: Expression of three osmotin-like protein genes in response to osmotic stress and fungal infection in potato.-Plant mol. Biol. 28: 17–26, 1995.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • G. Jyothsnakumari
    • 1
  • M. Thippeswamy
    • 2
  • G. Veeranagamallaiah
    • 2
  • C. Sudhakar
    • 3
  1. 1.Department of BotanyAcharya Nagarjuna UniversityNagarjuma NagarIndia
  2. 2.Department of BotanySri Krishnadevaraya UniversityAnantapurIndia
  3. 3.BiotechnologySri Krishnadevaraya UniversityAnantapurIndia

Personalised recommendations