Advertisement

Biologia Plantarum

, Volume 53, Issue 1, pp 105–111 | Cite as

Physiological responses of Lupinus luteus to different copper concentrations

  • M. P. Mourato
  • L. L. Martins
  • M. P. Campos-Andrada
Original Papers

Abstract

Yellow lupin (Lupinus luteus L.) plants were grown in hydroponic solution for 15 d under different copper concentrations (0.1, 0.5, 1.0, 10, 25 and 50 µM). With increasing Cu concentration total biomass was not affected, leaf area slightly decreased, while chlorophyll content decreased considerably. Cu content increased significantly both in roots and in leaves, but the contents of other ions were only slightly affected at the highest Cu concentration (Mn content decreased both in roots and in leaves, P content decreased only in leaves and Zn content increased in roots). Superoxide dismutase (SOD) activity increased up to day 7 after copper application. Peroxidase (GPOD) and polyphenol oxidase (PPO) activities also increased, while catalase (CAT) activity remained constant.

Additional key words

yellow lupin oxidative stress heavy metal toxicity 

Abbreviations

CAT

catalase

d.m.

dry mass

f.m.

fresh mass

GPOD

guaiacol peroxidase

PPO

polyphenol oxidase

SOD

superoxide dismutase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebi, H.E.: Catalase.-In: Bergmeyer, U.S. (ed.): Methods in Enzymatic Analysis. III. Oxireductases, Transferases. Pp. 273–277. Verlag Chemie, Weinheim 1983.Google Scholar
  2. Agrawal, V., Sharma, K.: Phytotoxic effects of Cu, Zn, Cd and Pb on in vitro regeneration and concomitant protein changes in Holarrhena antidysenterica.-Biol. Plant. 50: 307–310, 2006.CrossRefGoogle Scholar
  3. Alaoui-Sosse, B., Genet, P., Vinit-Dunand, F., Toussaint, M.L., Epron, D., Badot, P.M.: Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents.-Plant Sci. 166: 1213–1218, 2004.CrossRefGoogle Scholar
  4. Ali, M.B., Singh, N., Shohael, A.M., Hahn, E.J., Paek, K.Y.: Phenolics metabolism and lignin synthesis in root suspension cultures of Panax ginseng in response to copper stress.-Plant Sci. 171: 147–154, 2006.CrossRefGoogle Scholar
  5. Baron, M., Arellano, J.B., Gorge, J.L.: Copper and photosystem II: a controversial relationship.-Physiol. Plant. 94: 174–180, 1995.CrossRefGoogle Scholar
  6. Brennan, R.F., Mann, S.S.: Accumulation of cadmium by lupin species as affected by Cd application to acidic yellow sand.-Water Air Soil Pollut. 167: 243–258, 2005.CrossRefGoogle Scholar
  7. Brun, L.A., Le Corff, J., Maillet, J.: Effects of elevated soil copper on phenology, growth and reproduction of five ruderal plant species.-Environ. Pollut. 122: 361–368, 2003.PubMedCrossRefGoogle Scholar
  8. Chatterjee, J., Chatterjee, C.: Phytotoxicity of cobalt, chromium and copper in cauliflower.-Environ. Pollut. 109: 69–74, 2000.PubMedCrossRefGoogle Scholar
  9. Clijsters, H., Cuypers, A., Vangronsveld, J.: Physiological responses to heavy metals in higher plants: defence against oxidative stress.-Z. Naturforsch.. 54c: 730–734, 1999.Google Scholar
  10. Cuypers, A., Vangronsveld, J., Clijsters, H.: The chemical behaviour of heavy metals plays a prominent role in the induction of oxidative stress.-Free Radical Res. 31: S39–S43, 1999.CrossRefGoogle Scholar
  11. Cuypers, A., Vangronsveld, J., Clijsters, H.: Biphasic effect of copper on the ascorbate-glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation.-Physiol. Plant. 110: 512–517, 2000.CrossRefGoogle Scholar
  12. Fernandes, J.C., Henriques, F.S.: Biochemical, physiological, and structural effects of excess copper in plants.-Bot. Rev. 57: 246–273, 1991.CrossRefGoogle Scholar
  13. Gonnelli, C., Galardi, F., Gabbrielli, R.: Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa.-Physiol. Plant. 113: 507–514, 2001.CrossRefGoogle Scholar
  14. Gratão, P.L., Polle, A., Lea, P.J., Azevedo, R.A.: Making the life of heavy metal stressed plants a little easier.-Funct. Plant Biol. 32: 481–494, 2005.CrossRefGoogle Scholar
  15. Grotz, N., Guerinot, M.L.: Molecular aspects of Cu, Fe and Zn homeostasis in plants.-Biochim. biophys. Acta 1763: 595–608, 2006.PubMedCrossRefGoogle Scholar
  16. Gupta, H., Cuypers, A., Vangronsveld, J., Clijsters, H.: Copper affects the enzymes of the ascorbate-glutathione cycle and its related metabolites in the roots of Phaseolus vulgaris.-Physiol. Plant. 106: 262–267, 1999.CrossRefGoogle Scholar
  17. Jiang, W., Liu, D., Liu, X.: Effects of copper on root growth, cell division, and nucleolus of Zea mays.-Biol. Plant. 44: 105–109, 2001.CrossRefGoogle Scholar
  18. Jouili, H., Ferjani, E.E.: Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess.-Compt. rend. Biol. 326: 639–644, 2003.CrossRefGoogle Scholar
  19. Kopittke, P.M., Menzies, N.W.: Effect of Cu toxicity on growth of cowpea (Vigna unguiculata).-Plant Soil 279: 287–296, 2006.CrossRefGoogle Scholar
  20. Lidon, F.C., Henriques, F.S.: Copper toxicity in rice-diagnostic criteria and effect on tissue Mn and Fe.-Soil Sci. 154: 130–135, 1992.CrossRefGoogle Scholar
  21. Liu, J., Xiong, Z.T., Li, T.Y., Huang, H.: Bioaccumulation and ecophysiological responses to copper stress in two populations of Rumex dentatus L. from Cu contaminated and non-contaminated sites.-Environ. exp. Bot. 52: 43–51, 2004.CrossRefGoogle Scholar
  22. Madeira, A.C., Mendonca, A., Ferreira, M.E., Taborda, M.D.: Relationship between spectroradiometric and chlorophyll measurements in green beans.-Commun. Soil Sci. Plant Anal. 31: 631–643, 2000.CrossRefGoogle Scholar
  23. Maksymiec, W.: Effect of copper on cellular processes in higher plants.-Photosynthetica 34: 321–342, 1997.CrossRefGoogle Scholar
  24. Martins, L.L., Mourato, M.P.: Effect of excess copper on tomato plants: growth parameters, enzyme activities, chlorophyll and mineral content.-J. Plant Nutr. 29: 2179–2198, 2006.CrossRefGoogle Scholar
  25. Mayer, A.M.: Polyphenol oxidases in plants and fungi: Going places? A review.-Phytochemistry 67: 2318–2331, 2006.PubMedCrossRefGoogle Scholar
  26. Mazhoudi, S., Chaoui, A., Ghorbal, M.H., El Ferjani, E.: Response of antioxidant enzymes to excess copper in tomato (Lycopersicon esculentum Mill).-Plant Sci. 127: 129–137, 1997.CrossRefGoogle Scholar
  27. Mocquot, B., Vangronsveld, J., Clijsters, H., Mench, M.: Copper toxicity in young maize (Zea mays L.) plants: effects on growth, mineral and chlorophyll contents, and enzyme activities.-Plant Soil 182: 287–300, 1996.Google Scholar
  28. Oktay, M., Kufrevioglu, I., Kocacaliskan, I., Sakiroglu, H.: Polyphenoloxidase from Amasya apple.-J. Food Sci. 60: 494–496, 1995.CrossRefGoogle Scholar
  29. Österås, A., Greger, M.: Interactions between calcium and copper or cadmium in Norway spruce.-Biol. Plant. 50: 647–652, 2006.CrossRefGoogle Scholar
  30. Ouzounidou, G., Ciamporova, M., Moustakas, M., Karataglis, S.: Responses of maize (Zea mays L) plants to copper stress. 1. Growth, mineral content and ultrastructure of roots.-Environ. Exp. Bot. 35: 167–176, 1995.CrossRefGoogle Scholar
  31. Panda, S.: Impact of copper on reactive oxygen species, lipid peroxidation and antioxidants in Lemna minor.-Biol. Plant. 52: 561–564, 2008.CrossRefGoogle Scholar
  32. Patsikka, E., Kairavuo, M., Sersen, F., Aro, E.M., Tyystjarvi, E.: Excess copper predisposes photosystem II to photoinhibition in vivo by outcompeting iron and causing decrease in leaf chlorophyll.-Plant Physiol. 129: 1359–1367, 2002.PubMedCrossRefGoogle Scholar
  33. Prasad, M.N.V., Malec, P., Waloszek, A., Bojko, M., Strzalka, K.: Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation.-Plant Sci. 161: 881–889, 2001.CrossRefGoogle Scholar
  34. Rubio, M.C., Gonzalez, E.M., Minchin, F.R., Webb, K.J., Arrese-Igor, C., Ramos, J., Becana, M.: Effects of water stress on antioxidant enzymes of leaves and nodules of transgenic alfalfa overexpressing superoxide dismutases.-Physiol. Plant. 115: 531–540, 2002.PubMedCrossRefGoogle Scholar
  35. Rucinska, R., Waplak, S., Gwozdz, E.A.: Free radical formation and activity of antioxidant enzymes in lupin roots exposed to lead.-Plant Physiol. Biochem. 37: 187–194, 1999.CrossRefGoogle Scholar
  36. Tang, W., Newton, R.J.: Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus strobur L.) zygotic embryos.-Plant Physiol. Biochem. 43: 760–769, 2005.PubMedCrossRefGoogle Scholar
  37. Tewari, R.K., Kumar, P., Sharma, P.N.: Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants.-Planta 223: 1145–1153, 2006.PubMedCrossRefGoogle Scholar
  38. Van Assche, F., Clijsters, H.: Effects of metals on enzyme activity in plants.-Plant Cell Environ. 13: 195–206, 1990.CrossRefGoogle Scholar
  39. Vangronsveld, J., Clijsters, H.: Toxic effects of metals.-In: Farago, M.E. (ed.): Plants and the Chemical Elements. Biochemistry, Uptake, Tolerance and Toxicity. Pp. 149–177. VCH Verlagsgesellschaft, Weinheim 1994.Google Scholar
  40. Wojcik, M., Tukiendorf, A.: Response of wild type of Arabidopsis thaliana to copper stress.-Biol. Plant. 46: 79–84, 2003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • M. P. Mourato
    • 1
  • L. L. Martins
    • 1
  • M. P. Campos-Andrada
    • 2
  1. 1.Departamento de Química Agrícola e AmbientalInstituto Superior de AgronomiaLisboaPortugal
  2. 2.Departamento de Recursos Genéticos e MelhoramentoEstação Agronómica NacionalOeirasPortugal

Personalised recommendations