Biologia Plantarum

, Volume 53, Issue 1, pp 45–52 | Cite as

Genetic relationships among Hystrix patula, H. duthiei and H. longearistata according to meiotic studies and genome-specific RAPD assay

  • H.-Q. Zhang
  • Y.-H. Zhou
Original Papers


Hybrids including Hystrix patula, H. duthiei and H. longearistata were obtained and genetic relationships among them were studied. Meiotic pairing in hybrids of H. duthiei × Psathyrostachys juncea (Ns), H. longearistata × Psa. juncea (Ns), Leymus multicaulis (NsXm) × H. duthiei, L. multicaulis (NsXm) × H. longearistata, Elymus sibiricus (StH) × H. patula, Roegneria ciliaris (StY) × H. patula, R. ciliaris (StY) × H. duthiei and R. ciliaris (StY) × H. longearistata averaged 5.76, 5.44, 11.94, 10.88, 10.08, 3.57, 0.46 and 0.90 bivalents per cell, respectively. The results indicated that H. duthiei and H. longearistata had the NsXm genomes of Leymus, while H. patula contained the StH genomes and had a low genome affinity with the StY genomes of Roegneria. Results of genome-specific RAPD assay were comparable with the chromosome pairing data. According to the genomic system of classification in Triticeae, H. patula should be considered as Elymus hystrix L., while H. duthiei and H. longearistata as Leymus duthiei and Leymus duthiei ssp. longearistata, respectively.

Additional key words

chromosome pairing Leymus



cetyltrimethylammonium bromide


pollen mother cells


random amplified polymorphic DNA


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso, L.G., Kimber, G.: The analysis of meiosis in hybrids. II. Triploid hybrids.-Can. J. Genet. Cytol. 23: 221–234, 1981.Google Scholar
  2. Baden, C., Frederiksen, S., Seberg, O.: A taxonomic revision of the genus Hystrix (Triticeae, Poaceae).-Nord. J. Bot. 17: 449–467, 1997.CrossRefGoogle Scholar
  3. Baum, B.R.: A phylogenetic analysis of the tribe Triticeae (Poaceae) based on morphological characters of the genera.-Can. J. Bot. 61: 518–535, 1983.CrossRefGoogle Scholar
  4. Bor, N.L. (ed.): The Grasses of Burma, Ceylon, India and Pakistan.-Pergamon Press, New York 1960.Google Scholar
  5. Chakrabarti, S.K., Pattanayak, D., Sarkar, D., Chimote, V.P., Naik, P.S.: Stability of RAPD fingerprints in potato: effect of source tissue and primers.-Biol. Plant. 50: 531–536, 2006.CrossRefGoogle Scholar
  6. Church, G.L.: Taxonomic and genetic relationships of eastern North American species of Elymus with setaceous glumes.-Rhodora 69: 121–162, 1967.Google Scholar
  7. Dewey, D.R.: Genomic and phylogenetic relationships among North American perennial Triticeae.-In: Estes, J.R., Tyrl, R.J., Brunken, J.N. (ed.): Grasses and Grasslands: Systematics and Ecology. Pp. 51–88. University of Oklahoma Press, Norman 1982.Google Scholar
  8. Dewey, D.R.: The genome system of classification as a guide to intergeneric hybridization with the perennial Triticeae.-In: Gustafson, J.P. (ed.): Gene Manipulation in Plant Improvement. Pp. 209–279. Plenum Press, New York 1984.Google Scholar
  9. Dikshit, H.K., Jhang, T., Singh, N.K., Koundal, K.R., Bansal, K.C., Chandra, N., Tickoo, J.L., Sharma, T.R.: Genetic differentiation of Vigna species by RAPD, URP and SSR markers.-Biol. Plant. 51: 451–457, 2007.CrossRefGoogle Scholar
  10. Hitchcock, A.S. (ed.): Manual of the Grasses of the United States.-Dover Publications, New York 1951.Google Scholar
  11. Jensen, K.B., Wang, R.R.-C.: Cytological and molecular evidence for transferring Elymus coreanus from the genus Elymus to Leymus and molecular evidence for Elymus californicus (Poaceae: Triticeae).-Int. J. Plant Sci. 158: 872–877, 1997.CrossRefGoogle Scholar
  12. Keng, Y.L. (ed.): [Flora Illustralis Plantarum Sinicarum (Gramineae).]-Science Press, Beijing 1959. [In Chinese]Google Scholar
  13. Koyama, T. (ed.): Grasses of Japan and its Neighboring Regions. An Identification Manual.-Kodansha, Tokyo 1987.Google Scholar
  14. Kuo, P.C. (ed.): [Pooideae Flora Reipublicae Popularis Sinicae 9 (3).]-Science Press, Beijing 1987. [In Chinese.]Google Scholar
  15. Löve, A.: Conspectus of the Triticeae.-Feddes Rep. 95: 425–521. 1984.Google Scholar
  16. Moench, C. (ed.): Methodus Plantas Horti Botanici et Agri Marburgensis a Staminum Situ Describendi.-Margburgi Cattorum: in officina nova libraria academiae 1794.Google Scholar
  17. Ohwi, J. (ed.): Flora of Japan.-Smithonian Institute, Washington 1984.Google Scholar
  18. Osada, T. (ed.): Illustrated Grasses of Japan.-Heibonsha Press, Tokyo 1993.Google Scholar
  19. Sakamoto, S.: Patterns of phylogenetic differentiation in the tribe Triticeae.-Seiken Ziho 24: 11–31, 1973.Google Scholar
  20. Sears, E.R.: Genetic control of chromosome pairing in wheat.-Annu. Rev. Genet. 10: 31–51, 1976.PubMedCrossRefGoogle Scholar
  21. Seberg, O., Petersen, G.: A critical review of concepts and methods used in classical genome analysis.-Bot. Rev. 64: 372–417, 1998.CrossRefGoogle Scholar
  22. Sharp, P. J., Kreis, M., Shewry, P. R., Gale, M. D.: Location of β-amylase sequences in wheat and its relatives.-Theor. appl. Genet. 75: 286–290, 1988.CrossRefGoogle Scholar
  23. Tzvelev, N.N.: Poaceae URSS.-Nauka, Leningrad 1976.Google Scholar
  24. Wang, R.R.-C.: Genome analysis of Thinopyrum bassarabicum and T. elongatum.-Can. J. Genet. Cytol. 27: 722–728, 1985.Google Scholar
  25. Wang, R.R.-C.: Genome relationships in the perennial Triticeae based on diploid hybrids and beyond.-Hereditas 116: 133–136, 1992.CrossRefGoogle Scholar
  26. Wei, J.Z., Wang, R.R-C.: Genome-and species-specific markers and genome relationships of diploid perennial species in Triticeae based on RAPD analyses.-Genome 38: 1230–1236, 1995.PubMedGoogle Scholar
  27. Zhang, H.Q., Yang, R.W., Dou, Q.W., Tsujimoto, H., Zhou, Y.H.: Genome constitutions of Hystrix patula, H. duthiei ssp. duthiei and H. duthiei ssp. longearistata (Poaceae: Triticeae) revealed by meiotic pairing behavior and genomic in-situ hybridization.-Chromosome Res. 14: 595–604, 2006.PubMedCrossRefGoogle Scholar
  28. Zhang, H.Q., Zhou, Y.H.: Meiotic analysis of the interspecific and intergeneric hybrids between Hystrix patula Moench and H. duthiei ssp. longearistata, Pseudoroegneria, Elymus, Roegneria, and Psathyrostachys species.-Bot. J. Linn. Soc. 153: 213–219, 2007.CrossRefGoogle Scholar
  29. Zhang, H.Q., Zhou, Y.H.: Meiotic pairing behaviour reveals differences in genomic constitution between Hystrix patula and other species of genus Hystrix Moench (Poaceae: Triticeae).-Plant Syst. Evol. 258: 129–136, 2006.CrossRefGoogle Scholar
  30. Zhou, Y.H., Yen, C., Yang, J.L., Zheng, Y.L.: Cytogenetic studies of the interspecific hybrids between Hystrix longearistata in Japan and Hystrix duthiei in China.-Genet. Resour. Crop Evol. 46: 315–317, 1999.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Triticeae Research InstituteSichuan Agricultural University, DujiangyanSichuanP.R. China
  2. 2.Key Laboratory of Crop Genetic Resources and Improvement, Ministry of EducationSichuan Agricultural University, YaanSichuanP.R. China

Personalised recommendations