Biologia Plantarum

, Volume 52, Issue 4, pp 763–766 | Cite as

Exploration on the vacuum infiltration transformation of pakchoi

Brief Communication


Agrobacterium tumefaciens mediated vacuum infiltration transformation in planta has been established in pakchoi, a kind of Chinese cabbage, but the transformation frequency in harvested seeds has varied in the range of 0.5 to 3.0 × 10−4 over several years and is much lower than the transformation frequency in Arabidopsis thaliana. To understand that, the distribution and vitality changes of A. tumefaciens in plant tissues were examined. Results revealed that there was a majority of A. tumefaciens in the flower compared with that in the stem and in the leaf at all times after infiltration. As fact of transformants in the upper part of the treated plant (T0) stalk and fact of the survival of A. tumefaciens in the plant were proved, possibilities of optimizing the transformation conditions to increase the transformation frequency in pakchoi was discussed.

Additional key words

Agrobacterium tumefaciens Arabidopsis Brassica rapa ssp. chinensis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azpiroz-Leehan, R., Feldmann, K.A.: T-DNA insertion mutagenesis in Arabidopsis: going back and forth.-Trends Genet. 13: 152–156, 1997.PubMedCrossRefGoogle Scholar
  2. Bechtold, N., Ellis, J., Pelletier, G.: In planta agrobacteria mediated gene transfer by infiltration of adult Arabidopsis thaliana plants.-Compt. rend. Acad. Sci. Paris Life Sci. 316: 1194–1199, 1993.Google Scholar
  3. Bechtold, N., Jaudeau, B., Jolivet, S., Maba, B., Vezon, D., Voisin, R., Pelletier, G.: The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana.-Genetics 155: 1875–1887, 2000.PubMedGoogle Scholar
  4. Cao, M.Q., Liu, F., Yao, L., Bouchez, D., Tourneur, C., Li, Y., Robaglia, C.: Transformation of pakchoi (Brassica rapa L. ssp. chinensis) by Agrobacterium infiltration.-Mol. Breed. 6: 67–72, 2000.CrossRefGoogle Scholar
  5. Chang, S.S., Park, S.K., Kim, B.C., Kang, B.J., Kim, D.U., Nam, H.G.: Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta.-Plant J. 5: 551–558, 1994.CrossRefGoogle Scholar
  6. Chung, M.H., Chen, M.K., Pan, S.M.: Floral spray transformation can efficiently generate Arabidopsis transgenic plants.-Transgenic Res. 9: 471–476, 2000.PubMedCrossRefGoogle Scholar
  7. Clough, S.J., Bent, A.F.: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana.-Plant J. 16: 735–743, 1998.PubMedCrossRefGoogle Scholar
  8. Clough, S.J., Fengler, K.A., Yu, I.C., Lippok, B., Roger, K.S., Jr., Bent, A.F.: The Arabidopsis dnd1 “defense no death” gene encodes a mutated cyclic nucleotide-gate ion channel.-Proc. nat. Acad. Sci. USA 97: 9323–9328, 2000.PubMedCrossRefGoogle Scholar
  9. Curtis, I.S., Nam, H.G.: Transgenic radish (Raphanus sativus L. ssp. longipinnatus Bailey) by floral dip method — plant development and surfactant are important in optimizing transformation efficiency.-Transgenic Res. 10: 363–371, 2001.PubMedCrossRefGoogle Scholar
  10. Desfeux, C., Clough, S.J., Bent, A.F.: Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method.-Plant Physiol. 123: 895–904, 2000.PubMedCrossRefGoogle Scholar
  11. Fang, Z.D.: Method for Study of Plant Disease. 3rd Ed.-China Agricultural Press, Beijing 1998.Google Scholar
  12. Feldmann, K.A., Marks, M.D.: Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach.-Mol. gen. Genet. 208: 1–9, 1987.CrossRefGoogle Scholar
  13. Guo, X., Huang, C., Jin, S., Liang, S., Nie, Y., Zhang, X.: Agrobacterium-mediated transformation of Cry1C, Cry2A and Cry9C genes into Gossypium hirsutum and plant regeneration.-Biol. Plant. 51: 242–248, 2007.CrossRefGoogle Scholar
  14. Katavic, V., Haughn, G.W., Reed, D., Martin, M., Kunst, L.: In planta transformation of Arabidopsis thaliana.-Mol. gen. Genet. 245: 363–370, 1994.PubMedCrossRefGoogle Scholar
  15. Koncz, C., Schell, J.: The promoter of the TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector.-Mol. gen. Genet. 204: 383–396, 1986.CrossRefGoogle Scholar
  16. Krysan, P.J., Young, J.C., Sussman, M.R.: T-DNA as an insertional mutagen in Arabidopsis.-Plant Cell 11: 2283–2290, 1999.PubMedCrossRefGoogle Scholar
  17. Liu, F., Cao, M.Q., Yao, L., Robaglia, C., Tourneur, C.: In planta transformation of pakchoi (Brassica campestris L. ssp. chinensis) by infiltration of adult plants with Agrobacterium.-Acta Hort. 467: 187–192, 1998.Google Scholar
  18. Nandakumar, R., Babu, S., Kalpana, K., Raguchander, T., Balasubramanian, P., Samiyappan, R.: Agrobacterium-mediated transformation of indica rice with chitinase gene for enhanced sheath blight resistance.-Biol Plant. 51: 142–148, 2007.CrossRefGoogle Scholar
  19. Narasimhulu, S.B., Chopra, V.L.: Species specific shoot regeneration response of cotyledonary explants of Brassicas.-Plant Cell Rep. 7: 104–106, 1988.CrossRefGoogle Scholar
  20. Richardson, K., Fowler, S., Pullen, C., Skelton, C., Morris, B., Putterill, J.: T-DNA tagging of a flowering-time gene and improved gene transfer by in planta transformation of Arabidopsis.-Aust. J. Plant Physiol. 25: 125–130, 1998.CrossRefGoogle Scholar
  21. Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular Cloning: a Laboratory Manual. 2nd Ed.-Cold Spring Harbor Laboratory Press, New York 1989.Google Scholar
  22. Trieu, A.T., Burleigh, S.H., Kardailsky, L.V., Maldonado-Mendoza, L.E., Versaw, W.K., Blaylock, L.A., Shin, H., Chiou, T.J., Dewbre, G.R., Weigel, D., Harrison, M.J.: Transformation of Medicago Truncatula via infiltration of seedlings or flowering plants with Agrobacterium.-Plant J. 22: 531–541, 2000.PubMedCrossRefGoogle Scholar
  23. Yang, L., Xu, C.J., Hu, G.B.: Establishment of an Agrobacterium-mediated transformation system for Fortunella crassifolia.-Biol. Plant. 51: 541–545, 2007.CrossRefGoogle Scholar
  24. Ye, G.N., Stone, D., Pang, S.Z., Creely, W., Gonzalez, K., Hinchee, M.: Arabidopsis ovule is the target for Agrobacterium in planta vacuum infiltration transformation.-Plant J. 19: 249–257, 1999.PubMedCrossRefGoogle Scholar
  25. Zhang, F.L., Takahata, Y., Watanabe, M.: Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbage (Brassica campestris L. ssp. pekinensis).-Plant Cell Rep. 19: 569–575, 2000.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.National Engineering Research Center for VegetablesBeijingP.R. China
  2. 2.College of Life ScienceShandong University of TechnologyZiboP.R. China
  3. 3.College of Horticultural Science and EngineeringShandong Agricultural UniversityTai’anP.R. China

Personalised recommendations