Biologia Plantarum

, 52:660 | Cite as

Dormancy and germination in wheat embryos: ribonucleases and hormonal control

  • C. Spanò
  • R. Buselli
  • I. Grilli
Original Papers


Acidic and neutral ribonucleases (RNases) were studied in embryos of Triticum durum cv. Cappelli and the effects of abscisic acid (ABA) and gibberellic acid (GA3) were analysed. RNases activities increased during germination and were comparable in dormant and non-dormant embryos imbibed for 24 h. ABA generally inhibited ribonucleolytic activities, while GA3 only affected dormant embryos. To assess whether changes in RNase activities during germination or following hormonal treatment required new transcriptional or translational action, cycloheximide or cordycepin were used. The action of inhibitors of acidic RNase activity was found only in non-dormant-embryos. Findings obtained in the present work concur with a change of the ribonucleolytic pattern in the shift from dormant to non dormant metabolism.

Additional key words

abscisic acid cordycepin cycloheximide gibberellic acid 



abscisic acid


acidic Rnases


neutral salt-stimulated Rnases






neutral salt-inhibited Rnases




gibberellic acid


germination medium


non dormant


sodium dodecyl sulfate-polyacrylamide gel electrophoresis


  1. Agrawal, G.K., Yamazaki, M., Kobayashi, M., Hirochika, R., Miyao, A., Hirochika, H.: Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel OsTATC gene.-Plant Physiol. 125: 1248–1257, 2001.PubMedCrossRefGoogle Scholar
  2. Batak, I., Devic, M., Giba, Z., Grubisic, D., Poff, K.L., Konjevic, R.: The effects of potassium nitrate and NO-donors on phytochrome A-and phytochrome B-specific induced germination of Arabidopsis thaliana seeds.-Seed Sci. Res. 12: 253–259, 2002.CrossRefGoogle Scholar
  3. Beligni, M.V., Lamattina, L.: Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants.-Planta 210: 215–221, 2000.PubMedCrossRefGoogle Scholar
  4. Bensadoun, A., Weinstein, D.: Assay of protein in the presence of interfering materials.-Anal. Biochem. 70: 109–113, 1976.CrossRefGoogle Scholar
  5. Bethke, P.C., Gubler, F., Jacobsen, J.V., Jones, R.L.: Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide.-Planta 219: 847–855, 2004.PubMedCrossRefGoogle Scholar
  6. Bethke, P.C., Libourel, I.G.L., Jones, R.L.: Nitric oxide reduces seed dormancy in Arabidopsis.-J. exp. Bot. 57: 517–526, 2006.PubMedCrossRefGoogle Scholar
  7. Bewley, J.D.: Seed germination and dormancy.-Seed Sci. 9: 1055–1066, 1997.Google Scholar
  8. Bewley, J.D., Black, M.: Seeds: Physiology of Development and Germination.-Plenum Press, New York 1994.Google Scholar
  9. Bhargava, R.: Changes in abscisic and gibberellic acids contents during the release of potato seed dormancy.-Biol. Plant. 39: 41–45, 1997.CrossRefGoogle Scholar
  10. Blank, A., Sugiyama, R.H., Dekker, C.A.: Activity staining of nucleolytic enzymes after sodium dodecyl sulfate-polyacrilamide gel electrophoresis: use of aqueous isopropanol to remove detergent from gel.-Anal. Biochem. 120: 267–275, 1982.PubMedCrossRefGoogle Scholar
  11. Blank, A., McKeon, T.A.: Three RNases in senescent and non senescent wheat leaves.-Plant Physiol. 97: 1402–1408, 1991.PubMedGoogle Scholar
  12. Bove, J., Lucas, P., Godin, B., Ogé, L., Jullien, M., Grappin, P.: Gene expression analysis by c-DNA-AFLP highlights a set of new signaling networks and translational control during seed dormancy breaking in Nicotiana plumbaginifolia.-Plant mol. Biol. 57: 593–612, 2005.PubMedCrossRefGoogle Scholar
  13. Chang, S.C., Gallie, D.R.: RNase decreases following a heat shock in wheat leaves and correlates with posttranslational modifications.-Plant Physiol. 113: 1253–1263, 1997.PubMedGoogle Scholar
  14. Caers, L.I., Peumans, W.J., Carlier, A.R.: Preformed and newley synthesized messenger RNA in germinating wheat embryos.-Planta 144: 491–496, 1979.CrossRefGoogle Scholar
  15. Enriquez-Arredondo, C., Sanchez-Nieto, S., Rendon-Huerta, E., Gonzales-Halphen, D., Gavilanes-Ruiz, M., Diaz-Pontones, D.: The plasma membrane H+-ATPase of maize embryos localizes in regions that are critical during the onset of germination.-Plant Sci. 169: 11–19, 2005.CrossRefGoogle Scholar
  16. Finch-Savage, W.E., Leubner-Metzger, G.: Seed dormancy and the control of germination.-New Phytol. 171: 501–523, 2006.PubMedGoogle Scholar
  17. Gallie, D.R., Chang, S.-C., Young, T.E.: Induction of RNase and nuclease activity in cultured maize endosperm cells following sucrose starvation.-Plant Cell Tissue Org. Cult. 68: 163–170, 2002.CrossRefGoogle Scholar
  18. Giba, Z., Grubisic, D., Todorovic, S., Sajc, L., Stojakovic, D., Konjevic, T.: Effect of nitric oxide-releasing compounds on phytochrome-controlled germination of empress tree seeds.-Plant Growth Reg. 26: 175–181, 1998.CrossRefGoogle Scholar
  19. Gniazdowska, A., Dobrzynska, U., Babanczyk, T., Bogatek, R.: Breaking the apple dormancy by nitric oxide involves the stimulation of ethylene production.-Planta 225: 1051–1057, 2007.PubMedCrossRefGoogle Scholar
  20. Green, P.J.: The ribonucleases of higher plants.-Annu. Rev. Plant Physiol. Plant mol. Biol. 45: 421–445, 1994.CrossRefGoogle Scholar
  21. Grilli, I., Floris, C., Meletti, P.: Biological activity of fractions from embryo extracts of durum wheat at different phases of ripening.-Experientia 31: 1161–1163, 1975.CrossRefGoogle Scholar
  22. Grilli, I., Lioi, L., Anguillesi, M.C., Meletti, P., Floris, C.: Metabolism in seed ripening: protein and poly(A)+RNA pattern in developing embryos of Triticum durum.-J. Plant Physiol. 124: 321–330, 1986.Google Scholar
  23. Grilli, I., Meletti, P., Spanò, C.: Ribonucleases during ripening and after-ripening in Triticum durum embryos.-J. Plant Physiol. 159: 935–937, 2002.CrossRefGoogle Scholar
  24. Hilhorst, H.W.M., Karssen, C.M.: Seed dormancy and germination: the role of abscisic acid and gibberellin and the importance of hormone mutants.-Plant Growth Regul. 11: 225–238, 1992.CrossRefGoogle Scholar
  25. Hilhorst, H.W.M., Smitt, A.I., Karssen, C.M.: Gibberellin-biosynthesis and-sensitivity mediated stimulation of seed germination of Sisymbrium officinale by red light and nitrate.-Physiol. Plant. 67: 285–290, 1986.CrossRefGoogle Scholar
  26. Isola, M.C., Franzoni, L.: Changes in electrophoretic pattern of ribonucleases during aging of potato tuber slices.-Z. Pfalzenphysiol. 103: 277–283, 1981.Google Scholar
  27. Jacobsen, J.W., Pearce, D.W., Poole, A.T., Pharis, R.P., Mander, L.N.: Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley.-Physiol. Plant. 115: 428–441, 2002.PubMedCrossRefGoogle Scholar
  28. Johnson, R.R., Dyer, W.E.: Degradation of endosperm mRNAs during dry afterripening of cereal grains.-Seed Sci. Res. 10: 233–241, 2000.Google Scholar
  29. Karssen, C.M., Zagorksi, S., Kepczynski, J., Groott, S.P.C.: Key role for endogenous gibberellins in the control of seed germination.-Ann. Bot. 63: 71–80, 1989.Google Scholar
  30. Kawakami, N., Miyake, Y., Noda, K.: ABA insensitivity and low ABA levels during seed development of non-dormant wheat mutants.-J. exp. Bot. 48: 1415–1421, 1997.CrossRefGoogle Scholar
  31. Leubner-Metzger, G.: β-1,3-Glucanase gene expression in low-hydrated seeds as a mechanism for dormancy release during tobacco after-ripening.-Plant J. 41: 133–145, 2005.PubMedCrossRefGoogle Scholar
  32. Li, B., Foley, M.E.: Genetic and molecular control of seed dormancy.-Trends Plant Sci. 2: 384–389, 1997.CrossRefGoogle Scholar
  33. Li, Q., Feng, J.X., Han, P., Zhu, Y.X.: Parental RNA is significantly degraded during Arabidopsis seed germination.-J. Integr. Biol. 48: 114–120, 2006.CrossRefGoogle Scholar
  34. Lynch, R.M., Clegg, J.S.: A study of metabolism indry seeds of Avena fatua L. evaluated by incubation with ethanol-1-14C.-In: Leopold, A.C. (ed.): Membranes, Metabolism and Dry Organisms. Pp. 50–58. Cornell University Press, Ithaca 1986.Google Scholar
  35. Meletti, P.: [New perspectives in the study of factors which control seed germination.]-Gior. Bot. Ital. 102: 515–520, 1964. [In Italian.]Google Scholar
  36. Ried, J.L., Walker-Simmons, M.K.: Synthesis of abscisic acid-responsive, heat-stable proteins in embryonic axes of dormant wheat grain.-Plant Physiol. 93: 662–667, 1990.PubMedCrossRefGoogle Scholar
  37. Spanò, C., Buselli, R., Ruffini Castiglione, M., Bottega, S., Grilli, I.: RNases and nucleases in embryos and endosperms from naturally aged wheat seeds stored in different conditions.-J. Plant Physiol., 164: 487–495, 2007.PubMedCrossRefGoogle Scholar
  38. Spanò, C., Crosatti, C., Pacchini, R., Meletti, P., Grilli, I.: Ribonucleases during cold acclimation in winter and spring wheats.-Plant Sci. 162: 809–815, 2002.CrossRefGoogle Scholar
  39. Spanò, C., Grilli, I., Sbrana, V., Meletti, P.: Ribonucleases in leaves and roots of Triticum durum and ×Haynaldoticum sardoum submitted to low non freezing temperatures.-J. Plant Physiol. 155: 114–117, 1999.Google Scholar
  40. Spanò, C., Meletti, P., Floris, C.: Growth and germination inhibitors in durum wheat mature grain endosperms.-Phyton 33: 237–248, 1994.Google Scholar
  41. Van Beckum, J.M.M., Libbenga, K.R., Wang, M.: Abscisic acid and gibberellic acid-regulated responses of embryos and aleurone layers isolated from dormant and non dormant barley grains.-Physiol. Plant. 89: 483–489, 1993.CrossRefGoogle Scholar
  42. Wilson, C.M.: Plant nucleases.-Ann. Rev. Plant Physiol. 26: 187–208, 1975.CrossRefGoogle Scholar
  43. Walker-Simmons, M.K.: Embryonic ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars.-Plant Physiol. 84: 61–66, 1987.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Dipartimento di BiologiaUniversità di PisaPisaItaly

Personalised recommendations