Biologia Plantarum

, 52:587 | Cite as

Role of nitric oxide under saline stress: implications on proline metabolism

  • A. I. López-Carrión
  • R. Castellano
  • M. A. Rosales
  • J. M. Ruiz
  • L. Romero
Brief Communication


The present work is focused on the possible relationship between nitric oxide and the induction of proline in response to salt stress. The plants were subjected to 100 mM NaCl and sodium nitroprusside (SNP; the donor of NO) at different concentrations. The plants showed lower NaCl-induced oxidative stress and proline accumulation after application of low concentrations of SNP together with the NaCl treatment. The reduction in the proline content was related to increased activity of proline dehydrogenase. These results suggest that the NO could be capable of mitigating damage associated with salt stress.

Additional key words

ornithine-δ-aminotransferase proline dehydrogenase 1-pyrroline-5-carboxylate synthetase sodium nitroprusside 



bovine serum albumin


dry matter


fresh matter




hydrogen peroxide






nitric oxide




Δ1-pyrroline 5-carboxylate


pyrroline-5-carboxylate dehydrogenase


Δ1-pyrroline-5-carboxylate reductase


Δ1-pyrroline-5-carboxilate synthetase


proline dehydrogenase


phenylmethylsulfonyl fluoride


photosynthetic photon flux density


leaf relative growth rate


reactive oxygen species


sodium nitroprusside


  1. Ashraf, M., Harris, P.J.C.: Potential biochemical indicators of salinity tolerance in plants.-Plant Sci. 166: 3–16, 2004.CrossRefGoogle Scholar
  2. Beligni, M.V., Lamattina, L.: Nitric oxide in plants: the history is just beginning.-Plant Cell Environ. 24: 267–278, 2001.CrossRefGoogle Scholar
  3. Beligni, M.V., Lamattina, L.: Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species.-Plant Cell Environ. 25: 737–748, 2002.CrossRefGoogle Scholar
  4. Bradford, M.M.: A rapid and sensitive method for the quantification of micrograms quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  5. Charest, C., Phan, C.T.: Cold acclimation of wheat: properties of enzymes involved in proline metabolism.-Physiol. Plant. 80: 159–168, 1990.CrossRefGoogle Scholar
  6. Delauney, A.J., Verma, D.P.: Proline biosynthesis and osmoregulation in plants.-Plant J. 4: 215–223, 1993.CrossRefGoogle Scholar
  7. Delauney, A.J., Hu, C.-A., Kavi Kishor, P.B., Verma, D.P.S.: Cloning of ornithine-δ-aminotransferase cDNA from Vigna aconitifolia by transcomplementation in Escherichia coli and regulation of proline biosynthesis.-J. biol. Chem. 268: 18673–18678, 1993.PubMedGoogle Scholar
  8. Delledonne, M., Xia, Y., Dixon, R.A., Lamb, C.: Nitric oxide functions as a signal in plant disease resistance.-Nature 394: 585–588, 1998.PubMedCrossRefGoogle Scholar
  9. Demiral, T., Türkan, I.: Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance.-Environ. exp. Bot. 53: 247–257, 2005.CrossRefGoogle Scholar
  10. Diatloff, E., Rengel, Z.: Compilation of simple spectrophotometric techniques for the determination of elements in nutrient solutions.-J. Plant Nutr. 24: 75–86, 2001.CrossRefGoogle Scholar
  11. Fu, J., Huang, B.: Involvement of antioxidant and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress.-Environ. exp. Bot. 45: 105–114, 2001.PubMedCrossRefGoogle Scholar
  12. Hare, P.D., Cress, W.A.: Metabolic implications of stress-induced proline accumulation in plants.-Plant Growth Regul. 21: 79–102, 1997.CrossRefGoogle Scholar
  13. Hmida-Sayari, A., Gargouri-Bouzid, R., Bidani, A., Jaoua, L., Savouré, A., Jaoua, S.: Overexpresion of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants.-Plant Sci. 169: 746–752, 2005.CrossRefGoogle Scholar
  14. Ignarro, L.J., Barry, B.K., Gruetter, D.Y., Edwards, J.C., Ohlstein, E.H., Gruetter, C.A., Baricos, W.H.: Guanylate-cyclase activation by nitroprusside and nitrosoguanidine is related to formation of s-nitrosothiol intermediates.-Biochem. biophys. Res. Commun. 94: 93–100, 1980.PubMedCrossRefGoogle Scholar
  15. Irigoyen, J.J., Emerich, D.W., Sánchez-Díaz, M.: Water stress induced changes in the concentrations of proline and total soluble sugars in nodulated alfafa (Medicago sativa) plants.-Physiol. Plant. 84: 55–60, 1992.CrossRefGoogle Scholar
  16. Juan, M., Rivero, R.M., Romero, L., Ruiz, J.M.: Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars.-Environ. exp. Bot. 54: 193–201, 2005.CrossRefGoogle Scholar
  17. Kavi Kishor, P.B., Sangam, S., Amrutha, R.N., Sri Laxmi, P., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan, P., Sreenivasulu, N.: Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance.-Curr. Sci. 88: 424–438, 2005.Google Scholar
  18. LaRosa, P.C., Rhodes, D., Rhodes, J.C., Bressan, R.A. Csonka, L.N.: Elevated accumulation of proline in NaCl-adapted tobacco cells is not due to altered Δ1-pyrroline-5-carboxylate reductase.-Plant Physiol. 96: 245–250, 1991.PubMedGoogle Scholar
  19. Lutts, S., Majerus, V., Kinet, J.M.: NaCl effects on proline metabolism in rice (Oryza sativa) seedlings.-Physiol. Plant. 105: 450–458, 1999.CrossRefGoogle Scholar
  20. Matysik, J., Bhalu, B.A, Mohanty, P.: Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants.-Curr. Sci. 82: 525–532, 2002.Google Scholar
  21. Minguez-Mosquera, M.I., Jaren-Galen, M., Garrido-Fernández, J.: Lipoxygenase activity during pepper ripening and processing of paprika.-Phytochemistry 32: 1103–1108, 1993.CrossRefGoogle Scholar
  22. Mukherje, S.P., Choudhuri, M.A.: Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings.-Physiol. Plant. 58: 166–170, 1983.CrossRefGoogle Scholar
  23. Paquin, R., Lechasseur, P.: Observations sur une méthode de dosage de la proline libre dans les extraits de plantes.-Can. J. Bot. 57: 1851–1854, 1979.CrossRefGoogle Scholar
  24. Parida, A.K., Das, A.B.: Salt tolerance and salinity effects on plants: a review.-Ecotoxicol. Environ. Safe 60: 324–349, 2005.CrossRefGoogle Scholar
  25. Rosales, M.A., Ríos, J.J., Castellano, R., López-Carrión, A.I., Romero, L., Ruiz, J.M.: Proline metabolism in cherry tomato exocarp in relation to temperatura and solar radiation.-J. hort. Sci. Biotechnol. (in press).Google Scholar
  26. Sumithra, K., Jutur, P.P., Carmel, B.D., Reddy, A.R.: Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism.-Plant Growth Regul. 50: 11–22, 2006.CrossRefGoogle Scholar
  27. Tian, X., Lei, Y.: Nitric oxide treatment alleviates drought stress in wheat seedlings.-Biol. Plant. 50: 775–778, 2006.CrossRefGoogle Scholar
  28. Tripathi, S.B., Gurumurthi, K., Panigrahi, A.K., Shaw, B.P.: Salinity induced changes in proline and betaine contents and synthesis in two aquatic macrophytes differing in salt tolerance.-Biol. Plant. 51: 110–115, 2007.CrossRefGoogle Scholar
  29. Víteček, J., Wünschová, A., Petřek, J., Adam, V., Kizek, R., Havel, L.: Cell death induced by sodium nitropruside and hydrogen peroxide in tobacco BY-2 cell suspension.-Biol. Plant. 51: 472–749, 2007.CrossRefGoogle Scholar
  30. Wolf, B.: A comprehensive system of leaf analysis and its use for diagnosing crop nutrients status.-Commun. Soil Sci. Plant Anal. 13: 1035–1059, 1982.CrossRefGoogle Scholar
  31. Zhang, Y., Wang, L., Liu, Y., Zhang, Q., Wei, Q., Zhang, W.: Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast.-Planta 224: 545–555, 2006.PubMedCrossRefGoogle Scholar
  32. Zhao, L., Zhang, F., Guo, J., Yang, Y., Li, B., Zhang, L.: Nitric oxide functions as a signal in salt resistance in the calluses from two ectotypes of reed.-Plant Physiol. 134: 849–857, 2004.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • A. I. López-Carrión
    • 1
  • R. Castellano
    • 1
  • M. A. Rosales
    • 1
  • J. M. Ruiz
    • 1
  • L. Romero
    • 1
  1. 1.Department of Plant Physiology, Faculty of SciencesUniversity of GranadaGranadaSpain

Personalised recommendations