Skip to main content
Log in

Role of nitric oxide under saline stress: implications on proline metabolism

  • Brief Communication
  • Published:
Biologia Plantarum

Abstract

The present work is focused on the possible relationship between nitric oxide and the induction of proline in response to salt stress. The plants were subjected to 100 mM NaCl and sodium nitroprusside (SNP; the donor of NO) at different concentrations. The plants showed lower NaCl-induced oxidative stress and proline accumulation after application of low concentrations of SNP together with the NaCl treatment. The reduction in the proline content was related to increased activity of proline dehydrogenase. These results suggest that the NO could be capable of mitigating damage associated with salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

BSA:

bovine serum albumin

DM:

dry matter

FM:

fresh matter

GSA:

glutamic-γ-semialdehyde

H2O2 :

hydrogen peroxide

LOX:

lipoxygenase

MDA:

malondialdehyde

NO:

nitric oxide

δ-OAT:

ornithine-δ-aminotransferase

P5C:

Δ1-pyrroline 5-carboxylate

P5CDH:

pyrroline-5-carboxylate dehydrogenase

P5CR:

Δ1-pyrroline-5-carboxylate reductase

P5CS:

Δ1-pyrroline-5-carboxilate synthetase

PDH:

proline dehydrogenase

PMSF:

phenylmethylsulfonyl fluoride

PPFD:

photosynthetic photon flux density

RGRL :

leaf relative growth rate

ROS:

reactive oxygen species

SNP:

sodium nitroprusside

References

  • Ashraf, M., Harris, P.J.C.: Potential biochemical indicators of salinity tolerance in plants.-Plant Sci. 166: 3–16, 2004.

    Article  CAS  Google Scholar 

  • Beligni, M.V., Lamattina, L.: Nitric oxide in plants: the history is just beginning.-Plant Cell Environ. 24: 267–278, 2001.

    Article  CAS  Google Scholar 

  • Beligni, M.V., Lamattina, L.: Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species.-Plant Cell Environ. 25: 737–748, 2002.

    Article  CAS  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantification of micrograms quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Charest, C., Phan, C.T.: Cold acclimation of wheat: properties of enzymes involved in proline metabolism.-Physiol. Plant. 80: 159–168, 1990.

    Article  CAS  Google Scholar 

  • Delauney, A.J., Verma, D.P.: Proline biosynthesis and osmoregulation in plants.-Plant J. 4: 215–223, 1993.

    Article  CAS  Google Scholar 

  • Delauney, A.J., Hu, C.-A., Kavi Kishor, P.B., Verma, D.P.S.: Cloning of ornithine-δ-aminotransferase cDNA from Vigna aconitifolia by transcomplementation in Escherichia coli and regulation of proline biosynthesis.-J. biol. Chem. 268: 18673–18678, 1993.

    PubMed  CAS  Google Scholar 

  • Delledonne, M., Xia, Y., Dixon, R.A., Lamb, C.: Nitric oxide functions as a signal in plant disease resistance.-Nature 394: 585–588, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Demiral, T., Türkan, I.: Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance.-Environ. exp. Bot. 53: 247–257, 2005.

    Article  CAS  Google Scholar 

  • Diatloff, E., Rengel, Z.: Compilation of simple spectrophotometric techniques for the determination of elements in nutrient solutions.-J. Plant Nutr. 24: 75–86, 2001.

    Article  CAS  Google Scholar 

  • Fu, J., Huang, B.: Involvement of antioxidant and lipid peroxidation in the adaptation of two cool-season grasses to localized drought stress.-Environ. exp. Bot. 45: 105–114, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Hare, P.D., Cress, W.A.: Metabolic implications of stress-induced proline accumulation in plants.-Plant Growth Regul. 21: 79–102, 1997.

    Article  CAS  Google Scholar 

  • Hmida-Sayari, A., Gargouri-Bouzid, R., Bidani, A., Jaoua, L., Savouré, A., Jaoua, S.: Overexpresion of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants.-Plant Sci. 169: 746–752, 2005.

    Article  CAS  Google Scholar 

  • Ignarro, L.J., Barry, B.K., Gruetter, D.Y., Edwards, J.C., Ohlstein, E.H., Gruetter, C.A., Baricos, W.H.: Guanylate-cyclase activation by nitroprusside and nitrosoguanidine is related to formation of s-nitrosothiol intermediates.-Biochem. biophys. Res. Commun. 94: 93–100, 1980.

    Article  PubMed  CAS  Google Scholar 

  • Irigoyen, J.J., Emerich, D.W., Sánchez-Díaz, M.: Water stress induced changes in the concentrations of proline and total soluble sugars in nodulated alfafa (Medicago sativa) plants.-Physiol. Plant. 84: 55–60, 1992.

    Article  CAS  Google Scholar 

  • Juan, M., Rivero, R.M., Romero, L., Ruiz, J.M.: Evaluation of some nutritional and biochemical indicators in selecting salt-resistant tomato cultivars.-Environ. exp. Bot. 54: 193–201, 2005.

    Article  CAS  Google Scholar 

  • Kavi Kishor, P.B., Sangam, S., Amrutha, R.N., Sri Laxmi, P., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan, P., Sreenivasulu, N.: Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance.-Curr. Sci. 88: 424–438, 2005.

    Google Scholar 

  • LaRosa, P.C., Rhodes, D., Rhodes, J.C., Bressan, R.A. Csonka, L.N.: Elevated accumulation of proline in NaCl-adapted tobacco cells is not due to altered Δ1-pyrroline-5-carboxylate reductase.-Plant Physiol. 96: 245–250, 1991.

    PubMed  CAS  Google Scholar 

  • Lutts, S., Majerus, V., Kinet, J.M.: NaCl effects on proline metabolism in rice (Oryza sativa) seedlings.-Physiol. Plant. 105: 450–458, 1999.

    Article  CAS  Google Scholar 

  • Matysik, J., Bhalu, B.A, Mohanty, P.: Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants.-Curr. Sci. 82: 525–532, 2002.

    CAS  Google Scholar 

  • Minguez-Mosquera, M.I., Jaren-Galen, M., Garrido-Fernández, J.: Lipoxygenase activity during pepper ripening and processing of paprika.-Phytochemistry 32: 1103–1108, 1993.

    Article  CAS  Google Scholar 

  • Mukherje, S.P., Choudhuri, M.A.: Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings.-Physiol. Plant. 58: 166–170, 1983.

    Article  Google Scholar 

  • Paquin, R., Lechasseur, P.: Observations sur une méthode de dosage de la proline libre dans les extraits de plantes.-Can. J. Bot. 57: 1851–1854, 1979.

    Article  CAS  Google Scholar 

  • Parida, A.K., Das, A.B.: Salt tolerance and salinity effects on plants: a review.-Ecotoxicol. Environ. Safe 60: 324–349, 2005.

    Article  CAS  Google Scholar 

  • Rosales, M.A., Ríos, J.J., Castellano, R., López-Carrión, A.I., Romero, L., Ruiz, J.M.: Proline metabolism in cherry tomato exocarp in relation to temperatura and solar radiation.-J. hort. Sci. Biotechnol. (in press).

  • Sumithra, K., Jutur, P.P., Carmel, B.D., Reddy, A.R.: Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism.-Plant Growth Regul. 50: 11–22, 2006.

    Article  CAS  Google Scholar 

  • Tian, X., Lei, Y.: Nitric oxide treatment alleviates drought stress in wheat seedlings.-Biol. Plant. 50: 775–778, 2006.

    Article  CAS  Google Scholar 

  • Tripathi, S.B., Gurumurthi, K., Panigrahi, A.K., Shaw, B.P.: Salinity induced changes in proline and betaine contents and synthesis in two aquatic macrophytes differing in salt tolerance.-Biol. Plant. 51: 110–115, 2007.

    Article  CAS  Google Scholar 

  • Víteček, J., Wünschová, A., Petřek, J., Adam, V., Kizek, R., Havel, L.: Cell death induced by sodium nitropruside and hydrogen peroxide in tobacco BY-2 cell suspension.-Biol. Plant. 51: 472–749, 2007.

    Article  Google Scholar 

  • Wolf, B.: A comprehensive system of leaf analysis and its use for diagnosing crop nutrients status.-Commun. Soil Sci. Plant Anal. 13: 1035–1059, 1982.

    Article  CAS  Google Scholar 

  • Zhang, Y., Wang, L., Liu, Y., Zhang, Q., Wei, Q., Zhang, W.: Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast.-Planta 224: 545–555, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, L., Zhang, F., Guo, J., Yang, Y., Li, B., Zhang, L.: Nitric oxide functions as a signal in salt resistance in the calluses from two ectotypes of reed.-Plant Physiol. 134: 849–857, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Romero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Carrión, A.I., Castellano, R., Rosales, M.A. et al. Role of nitric oxide under saline stress: implications on proline metabolism. Biol Plant 52, 587–591 (2008). https://doi.org/10.1007/s10535-008-0117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-008-0117-1

Additional key words

Navigation