Advertisement

Biologia Plantarum

, 52:548 | Cite as

Protein profiling in F1 and F2 generations of two tomato genotypes differing in ripening time

  • G. R. Rodríguez
  • L. Sequin
  • G. R. Pratta
  • R. Zorzoli
  • L. A. Picardi
Brief Communication

Abstract

Pericarp polypeptide profiles were analyzed at three ripening stages in the F1 hybrid and the F2 population from the cross between the accessions: LA1385 (Lycopersicon esculentum var. cerasiforme) and 804627 (L. esculentum, a homozygous genotype for the nor mutant). Six polymorphic polypeptides were observed in LA1385, while no polymorphic polypeptides among ripening stages was observed in 804627. On the other hand, some polypeptides in the F1 hybrid were not observed in the parents whereas others were present in both parental genotypes and were unnoticeable in the hybrid genotype. From a cluster analysis on the protein profiles of the F2 population, the differential expression of proteins allowed to distinguish mature green (MG) stage from the others two stages, while for breaker stage (BR) and red ripe stage, the genetic background was more important in forming groups. The differential expression of proteins could be associated with fruit morphology traits such as a 72 kDa polypeptide present in MG stage with fruit diameter, height and mass and a 47 kDa polypeptide found in BR with fruit shelf life.

Additional key words

fruit shelf life Lycopersicon esculentum var. cerasiforme nor mutant SDS-PAGE tomato fruit ripening 

Abbreviations

BR

breaker stage

MG

mature green stage

Mr

molecular mass range

RR

red ripe stage

SDS-PAGE

sodium dodecyl sulfate polyacrylamide gel electrophoresis

References

  1. Alba, R., Payton, P., Fei, Z., McQuinn, R., Debbie, P., Martin, G.B., Tanksley, S.D., Giovannoni, J.J.: Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development.-Plant J. 17: 2954–2965, 2005.Google Scholar
  2. Alpert, K., Tanksley, S.D.: High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative locus in tomato.-Proc. nat. Acad. Sci. USA 93: 15503–15507, 1996.PubMedCrossRefGoogle Scholar
  3. Bortolotti, S., Boggio, S.B., Delgado, L., Orellano, E.G., Valle, E.M.: Different induction patterns of glutamate metabolizing enzymes in ripening fruits of the tomato mutant green flesh.-Physiol. Plant. 119: 384–391, 2003.CrossRefGoogle Scholar
  4. Carbone, F., Pizzichini, D., Giuliano, G., Rosati, C., Perrotta, G.: Comparative profiling of tomato fruits and leaves evidences a complex modulation of global transcript profiles.-Plant Sci. 94: 165–175, 2005.CrossRefGoogle Scholar
  5. Castro, H.A., Galvez, M.J., González, S.R., Villamil, C.B.: Protein composition of Cucurbita maxima and C. moschata seeds.-Biol. Plant. 50: 251–256, 2006.CrossRefGoogle Scholar
  6. Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B., Pang, E.C.K.: An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts.-Euphytica 142: 169–196, 2005.CrossRefGoogle Scholar
  7. Fender, S.E., O’Connell, M.A.: Expression of the heat shock response in a tomato interspecific hybrid is not intermediate between the two parental responses.-Plant Physiol. 93: 1140–1146, 1990.PubMedGoogle Scholar
  8. Frary, A., Nesbitt, C., Frary, A., Grandillo, S., Van der Knaap, E., Cong, B., Liu, J., Meller, J., Elber, R., Alpert, K., Tanskley, S.D.: fw22: a quantitative trait locus key to the evolution of tomato fruit size.-Science 289: 85–88, 2000.PubMedCrossRefGoogle Scholar
  9. Giovannoni, J.J.: Genetic regulation of fruit development and ripening.-Plant Cell 16: 170–180, 2004.CrossRefGoogle Scholar
  10. Grierson, D., Tucker, G.: Timing of ethylene and polygalacturonase synthesis in relation to the control of tomato fruit ripening.-Planta 157: 174–179, 1983.CrossRefGoogle Scholar
  11. Hurkman, W.J., Tanaka, C.K.: Phenol extraction followed by methanolic ammonium precipitation an effective protocol for sample preparation from protein-poor, recalcitrant tissues such as plants.-Plant Physiol. 81: 802–806, 1986.PubMedGoogle Scholar
  12. Mutschler, M.A., Wolfe, D.W., Cobb, E.D., Yourstone, K.S.: Tomato fruit quality and shelf life in hybrids heterozygous for the alc ripening mutants.-HortScience 27: 352–355, 1992.Google Scholar
  13. Piechulla, B., Glick, R.E., Bahl, H., Melis, A., Gruissem, W.: Changes in photosynthetic capacity and photosynthetic protein pattern during tomato fruit ripening.-Plant Physiol. 84: 911–917, 1987.PubMedCrossRefGoogle Scholar
  14. Pratta, G., Zorzoli, R., Picardi, L.A.: Diallel analysis of production traits among domestic, exotic and mutant germplasms of Lycopersicon.-Genet. mol. Res. 2: 206–213, 2003.PubMedGoogle Scholar
  15. Pratta, G., Zorzoli, R., Picardi, L.A., Valle, E.M., Carrillo, N.: Characterization of tomato genotypes that differ in their fruti shelf-life by analysis of total pericarp protein patterns at two ripening stages.-Acta Hort. 546: 483–487, 2001.Google Scholar
  16. Pratta, G.R., Zorzoli, R., Picardi, L.A., Valle, E.M.: Variability for the in vitro culture response in tomato recombinant inbred lines.-Biol. Plant. 50: 421–424, 2006.CrossRefGoogle Scholar
  17. Rodríguez, G.R., Pratta, G.R., Zorzoli, R., Picardi, L.A.: Transgressive segregation for fruit quality traits in a cross between wild and mutant genotypes of Lycopersicon spp.-New Zeal. J. Crop hort. Sci. 33: 373–379, 2005.Google Scholar
  18. Schuelter, A.R., Finger, F.L., Casali, V.W.D., Brommonschenkel, S.H., Otoni, W.C.: Inheritance and genetic linkage analysis of a firm-ripening tomato mutant.-Plant Breed. 121: 338–342, 2002.CrossRefGoogle Scholar
  19. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples).-Biometrika 52: 591–611, 1965.Google Scholar
  20. Snedecor, G.: Métodos Estadísticos [Statistical methods.]-Compañía Editorial, México DF 1964. [In Spanish.].Google Scholar
  21. Tigchelaar, E.C., Mc Glasson, W.B., Buescher, R.W.: Genetic regulation of tomato fruit ripening.-HortScience 13: 508–513, 1978.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • G. R. Rodríguez
    • 1
  • L. Sequin
    • 2
  • G. R. Pratta
    • 1
  • R. Zorzoli
    • 3
  • L. A. Picardi
    • 3
  1. 1.Fac. Cs. Agrarias, UNR, CC 14CONICET-Cátedra de GenéticaZavallaArgentina
  2. 2.E.E. INTA Marcos JuárezMarcos Juárez, CórdobaArgentina
  3. 3.Fac. Cs. Agrarias, UNR, CC 14CIUNR-Cátedra de GenéticaZavallaArgentina

Personalised recommendations