Biologia Plantarum

, Volume 52, Issue 2, pp 259–266 | Cite as

Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress

Original Papers


A quantitative trait loci (QTL) approach was applied to dissect the genetic control of the common wheat seedling response to osmotic stress. A set of 114 recombinant inbred lines was subjected to osmotic stress from the onset of germination to the 8th day of seedling development, induced by the presence of 12 % polyethylene glycol. Root, coleoptile and shoot length, and root/shoot length ratio were compared under stress and control conditions. In all, 35 QTL mapping to ten chromosomes, were identified. Sixteen QTL were detected in controls, 17 under stressed conditions, and two tolerance index QTL were determined. The majority of the QTL were not stress-specific. In regions on five chromosome arms (1AS, 1BL, 2DS, 5BL and 6BL) the QTL identified under stress co-mapped with QTL affecting the same trait in controls, and these were classified as seedling vigour QTL, in addition to those expressed in controls. Tolerance-related QTL were detected on four chromosome arms. A broad region on chromosome 1AL, including five QTL, with a major impact of the gene Glu-A1 (LOD 3.93) and marker locus Xksuh9d (LOD 2.91), positively affected root length under stress and tolerance index for root length, respectively. A major QTL (LOD 3.60), associated with marker locus Xcdo456a (distal part of chromosome arm 2BS) determined a tolerance index for shoot length. Three minor QTL (LOD < 3.0) for root length and root/shoot length ratio under osmotic stress were identified in the distal parts of chromosome arms 6DL (marker locus Xksud27a) and 7DL (marker locus Xksue3b). Selecting for the favourable alleles at marker loci associated with the detected QTL for growth traits may represent an efficient approach to enhance the plants’ ability to maintain the growth of roots, coleoptile and shoots in drought-prone soils at the critical early developmental stages.

Additional key words

drought germination ITMI polyethylene glycol quantitative trait loci tolerance index Triticum aestivum 



interval analysis

Cl, Rl, Sl

coleoptile, root and shoot length, respectively


International Triticeae Mapping Initiative


logarithm of odds


polyethylene glycol


quantitative trait locus


restriction fragment length polymorphism


recombinant inbred lines


root/shoot length ratio


single marker analysis


simple sequence repeats


tolerance index


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almansouri, M., Kinet, J.-M., Lutts, S.: Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.).-Plant Soil 231: 243–254, 2001.CrossRefGoogle Scholar
  2. Anderson, J.A., Stack, R.W., Liu, S., Waldron, B.L., Fjeld, A.D., Coyne, C., Moreno-Sevilla, B., Mitchell Fetch, J., Song, Q.J., Cregan, P.B., Frohberg, R.C.: DNA markers for Fusarium head blight resistance QTLs in two wheat populations.-Theor. appl. Genet. 102: 1164–1168, 2001.CrossRefGoogle Scholar
  3. Bálint, A., Röder, M.S., Hell, R., Galiba, G., Börner, A.: Mapping of QTLs affecting copper tolerance and the Cu, Fe, Mn and Zn concentrations in the shoots of wheat seedlings.-Biol. Plant. 51: 129–134, 2007.CrossRefGoogle Scholar
  4. Bartels, D., Souer, E.: Molecular responses of higher plants to dehydration.-In: Hirt, H., Shinozaki, K. (ed.): Topics in Current Genetics. Vol. 4: Plant Responses to Abiotic Stress. Pp. 9–37. Springer-Verlag, Berlin-Heidelberg 2003.Google Scholar
  5. Bewley, J.D.: Seed germination and dormancy.-Plant Cell 9: 1055–1066, 1997.PubMedCrossRefGoogle Scholar
  6. Blum, A.: Crop responses to drought and the interpretation of adaptation.-Plant Growth Regul. 20: 135–148, 1996.CrossRefGoogle Scholar
  7. Blum, A., Sinmena, B., Ziv, O.: An evaluation of seed and seedling drought tolerance screening tests in wheat.-Euphytica 29: 727–736, 1980.CrossRefGoogle Scholar
  8. Börner, A., Schumann, E., Fürste, A., Cöster, H., Leithold, B., Röder, M.S., Weber, W.E.: Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.).-Theor. appl. Genet. 105: 921–936, 2002.PubMedCrossRefGoogle Scholar
  9. Botwright, T., Rebetzke, G., Condon, T., Richards, R.: The effect of rht genotype and temperature on coleoptile growth and dry matter partitioning in young wheat seedlings.-Aust. J. Plant Physiol.. 28: 417–423, 2001.Google Scholar
  10. Cattivelli, L., Baldi, P., Crosatti, C., Di Fonzo, N., Faccioli, P., Grossi, M., Mastrangelo, A.M., Pecchioni, N., Stanca, A.M.: Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae.-Plant mol. Biol. 48: 649–665, 2002.CrossRefGoogle Scholar
  11. Champoux, M.C., Wang, G., Sarkarung, S., Mackill, D.J., O’Toole, J.C., Huang, N., McCouch, S.R.: Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers.-Theor. appl. Genet. 90: 969–981, 1995.CrossRefGoogle Scholar
  12. Collard, B.C.Y., Jahufer, M.Z.Z., Brouwer, J.B., Pang, E.C.K.: An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts.-Euphytica 142: 169–196, 2005.CrossRefGoogle Scholar
  13. Dhanda, S.S., Sethi, G.S., Behl, R.K.: Indices of drought tolerance in wheat genotypes at early stages of plant growth.-J. Agron. Crop Sci. 190: 6–12, 2004.CrossRefGoogle Scholar
  14. Faris, J.D., Friesen, T.L.: Identification of quantitative trait loci for race-nonspecific resistance to tan spot in wheat.-Theor. appl. Genet. 111: 386–392, 2005.PubMedCrossRefGoogle Scholar
  15. Galiba, G., Pecchioni, N., Vágújfalvi, A., Francia, E., Tóth, B., Barabaschi, D., Barilli, S., Crosatti, C., Cattivelli, L., Stanca, M.A.: Localization of QTLs and candidate genes involved in the regulation of frost resistance in cereals.-In: Tuberosa, R., Phillips, R.L., Gale, M.D. (ed.): Proc. Int. Congr. “In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution”. Pp. 253–266. Avenue Media, Bologna 2005.Google Scholar
  16. Kerepesi, I., Galiba, G.: Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings.-Crop Sci. 40: 482–487, 2000.Google Scholar
  17. Liu, W.-J., Yuan, S., Zhang, N.-H., Lei, T., Duan, H.-G., Liang, H.-G., Lin, H.-H.: Effect of water stress on photosystem 2 in two wheat cultivars.-Biol. Plant. 50: 597–602, 2006.CrossRefGoogle Scholar
  18. Lohwasser, U., Röder, M.S., Börner, A.: QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.).-Euphytica 143: 247–249, 2005.CrossRefGoogle Scholar
  19. Marino, C.L., Nelson, J.C., Lu, Y.H., Sorrels, M.E., Leroy, P., Lopes, C.R., Hart, G.E.: RFLP-based linkage maps of the homeologous group 6 chromosomes of hexaploid wheat (Triticum aestivum L. Em. Thell.).-Genome 39: 359–366, 1996.PubMedCrossRefGoogle Scholar
  20. Matsui, T., Inanaga, S., Sugimoto, Y., Nakata, N.: Chromosomal location of genes controlling final coleoptile length in wheat using chromosome substitution lines.-Wheat Inform. Serv. 87: 22–26, 1998.Google Scholar
  21. McCarty, D.R.: Genetic control and integration of maturation and germination pathways in seed development.-Annu. Rev. Plant Physiol. Plant mol. Biol. 46: 71–93, 1995.CrossRefGoogle Scholar
  22. Mujtaba, S.M., Khanzada, B., Ali, M., Naqvi, M.H., Mughal, S., Alam, S.M., Shirazi, M.U., Khan, M.A., Mumtaz, S.: The effect of polyethylene glycol on seed germination of wheat (Triticum aestivum L.) genotypes/lines.-Wheat Inform. Serv. 99: 58–60, 2005.Google Scholar
  23. Nayyar, H.: Variation in osmoregulation in differentially drought-sensitive wheat genotypes involves calcium.-Biol. Plant. 47: 541–547, 2003/4.CrossRefGoogle Scholar
  24. Nelson, J.C.: QGene: software for marker-based genomic analysis and breeding.-Mol. Breed. 3: 239–245, 1997.CrossRefGoogle Scholar
  25. Nelson, J.C., Singh, R.P., Autrique, J.E., Sorrells, M.E.: Mapping genes conferring and suppressing leaf rust resistance in wheat.-Crop Sci. 37: 1928–1935, 1997.Google Scholar
  26. Nelson, J.C., Sorrells, M.E., Van Deynze, A.E., Lu, Y.H., Atkinson, M., Bernard, M., Leroy, P., Faris, J.D., Anderson, A.: Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5 and 7.-Genetics 141: 721–731, 1995a.PubMedGoogle Scholar
  27. Nelson, J.C., Van Deynze, A.E., Autrique, E., Sorrells, M.E., Lu, Y.H., Merlino, M., Atkinson, M., Leroy, P.: Molecular mapping of wheat homoeologous group 2.-Genome 38: 516–524, 1995b.PubMedGoogle Scholar
  28. Nelson, J.C., Van Deynze, A.E., Autrique, E., Sorrells, M.E., Lu, Y.H., Negre, S., Bernard, M., Leroy, P.: Molecular mapping of wheat homeologous group 3.-Genome 38: 525–533, 1995c.PubMedGoogle Scholar
  29. Okçu, G., Kaya, M.D., Atak, M.: Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.).-Turk. J. Agr. TÜBITAK 29: 237–242, 2005.Google Scholar
  30. Perretant, M.R., Cadalen, T., Charmet, G., Sourdille, P., Nicolas, P., Boeuf, C., Tixier, M.H., Branlard, G., Bernard, S.: QTL analysis of bread-making quality in wheat using a doubled haploid population.-Theor. appl. Genet. 100: 1167–1175, 2000.CrossRefGoogle Scholar
  31. Pirdashti, H., Tahmasebi Sarvestani, Z., Nematzadeh, G.H., Ismail, A.: Effect of water stress on seed germination and seedling growth of rice (Oryza sativa L.) genotypes.-Pakistan J. Agron. 2: 217–222, 2003.Google Scholar
  32. Rebetzke, G.J., Appels, R., Morrison, A.D., Richards, R.A., McDonald, G., Ellis, M.H., Spielmeyer, W., Bonnett, D.G.: Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.).-Aust. J. agr. Res. 52: 1221–1234, 2001.CrossRefGoogle Scholar
  33. Reynolds, M.P., Skovmand, B., Trethowan, R.M., Pfeiffer, W.H.: Evaluating a conceptual model for drought tolerance.-In: Ribaut, J.M., Poland, D. (ed.): Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-Limited Environments. Pp. 49–53. CIMMYT, Mexico 2000.Google Scholar
  34. Richards, R.A.: Defining selection criteria to improve yield under drought.-Plant Growth Regul. 20: 157–166, 1996.CrossRefGoogle Scholar
  35. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.-H., Leroy, P., Ganal, M.W.: A microsatellite map of wheat.-Genetics 149: 2007–2023, 1998.PubMedGoogle Scholar
  36. Schmolke, M., Zimmermann, G., Buerstmayr, H., Schweizer, G., Miedaner, T., Korzun, V., Ebmeyer, E., Hartl, L.: Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx.-Theor. appl. Genet. 111: 747–756, 2005.PubMedCrossRefGoogle Scholar
  37. Shinozaki, K., Yamaguchi-Shinozaki, K., Liu, Q., Kasuda, M., Ichimura K., Mizogichi, T., Urao, T., Miyata, S., Nakashima, K., Shinwari, Z., Hiroshi, A., Sakuma, Y., Ito, T., Seki, M.: Molecular responses to drought stress in plants: regulation of gene expression and signal transduction.-In: Smallwood, M.F., Calvert, C.M., Bowles, D.J. (ed.): Plant Responses to Environmental Stress. Pp. 133–143. BIOS Scientific Publishers, Oxford 1999.Google Scholar
  38. Simón, M.R., Ayala, F.M., Cordo, C.A., Röder, M.S., Börner, A.: Molecular mapping of quantitative trait loci determining resistance to Septoria tritici blotch caused by Mycosphaerella graminicola in wheat.-Euphytica 138: 41–48, 2004.CrossRefGoogle Scholar
  39. Sourdille, P., Perretant, M.R., Charmet, G., Leroy, P., Gautier, M.F., Joudrier, P., Nelson, J.C., Sorrells, M.E., Bernard, M.: Linkage between RFLP markers and genes affecting kernel hardness in wheat.-Theor. appl. Genet. 93: 580–586, 1996.CrossRefGoogle Scholar
  40. Sourdille, P., Snape, J.W., Cadalen, T., Charmet, G., Nakata, N., Bernard, S., Bernard, M.: Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population.-Genome 43: 487–494, 2000.PubMedCrossRefGoogle Scholar
  41. Tuberosa, R., Sanguineti, M.C., Landi, P., Giuliani, M.M., Salvi, S., Conti, S.: Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes.-Plant mol. Biol. 48: 697–712, 2002.PubMedCrossRefGoogle Scholar
  42. Van Deynze, A.E., Dubcovsky, J., Gill, K.S., Nelson, J.C., Sorrells, M.E., Dvorák, J., Gill, B.S., Lagudah, E.S., McCouch, S.R., Appels, R.: Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat.-Genome 38: 45–59, 1995.PubMedGoogle Scholar
  43. Willenborg, C.J., Wildeman, J.C., Miller, A.K., Rossnagel, B.G., Shirtliffe, S.J.: Oat germination characteristics differ among genotypes, seed sizes, and osmotic potentials.-Crop Sci. 45: 2023–2029, 2005.CrossRefGoogle Scholar
  44. Worland, A.J., Börner, A., Korzun, V., Li, W.M., Petrovic, S., Sayers, E.J.: The influence of photoperiod genes on the adaptability of European winter wheats.-In: Braun, H.-J. (ed.): Wheat: Prospects for Global Improvement. Pp. 517–526. Kluwer Academic Publishers, Dordrecht 1997.Google Scholar
  45. Worland, A., Korzun, V., Röder, M., Ganal, M.: Genetic analysis of the dwarfing gene Rht8 in wheat. Part II. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening.-Theor. appl. Genet. 96: 1110–1120, 1998.CrossRefGoogle Scholar
  46. Yordanov, I., Velikova, V., Tsonev, T.: Plant responses to drought and stress tolerance.-Bulg. J. Plant Physiol. 29 (Special Issue): 187–206, 2003.Google Scholar

Copyright information

© Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Praha 2008

Authors and Affiliations

  • S. Landjeva
    • 1
    • 2
  • K. Neumann
    • 1
  • U. Lohwasser
    • 1
  • A. Börner
    • 1
  1. 1.Leibniz Institute of Plant Genetics and Crop ResearchGaterslebenGermany
  2. 2.Institute of GeneticsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations