Biologia Plantarum

, Volume 52, Issue 1, pp 26–35 | Cite as

Agrobacterium rhizogenes mediated transformation of Scutellaria baicalensis and production of flavonoids in hairy roots

Original Papers


Using different explants of in vitro seed grown Scutellaria baicalensis Georgi plantlets, hairy roots were induced following inoculation of Agrobacterium rhizogenes strains A4GUS, R1000 LBA 9402 and ATCC11325. The A4GUS proved to be more competent than other strains and the highest transformation rates were observed in cotyledonary leaf explant (42.6 %). The transformed roots appeared after 15–20 d of incubation on hormone free Murashige and Skoog medium. Growth of hairy roots was assessed on the basis of total root elongation, lateral root density and biomass accumulation. Maximum growth rate was recorded in root:medium ratio 1:100 (m/v). Hairy root lines were further established in Gamborg B5 medium and the biomass increase was maximum from 15 to 30 d. PCR, Southern hybridization and RT-PCR confirmed integration and expression of left and right termini-linked Ri T-DNA fragment of the Ri plasmid from A4GUS into the genome of Scutellaria baicalensis hairy roots. GUS assay was also performed for further integration and expression. All the clones showed higher growth rate them non-transformed root and accumulated considerable amounts of the root-specific flavonoids. Baicalin content was 14.1–30.0 % of dry root mass which was significantly higher then that of control field grown roots (18 %). The wogonin content varies from 0.08 to 0.18 % among the hairy root clones which was also higher than in non-transformed roots (0.07 %).

Additional key words

baicalin genetic transformation medicinal plants wogonin 



agropine synthase

B5 medium

Gamborg B5 medium


fresh mass


high performance liquid chromatography

MS medium

Murashige and Skoog medium




polymerase chain reaction


root-inducing plasmid


left-terminus DNA


right-terminus DNA


yeast extract broth


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoki, S., Syono, K.: Synergistic function of rolB, rolC, ORF13 and ORF14 of TL-DNA of Agrobacterium rhizogenes in hairy root induction in Nicotiana tabacum.-Plant Cell Physiol. 40: 252–256, 1999.Google Scholar
  2. Batra, J., Dutta, A., Singh, D., Kumar, S., Sen, J.: Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left-and right-termini-linked Ri T-DNA gene integration.-Plant Cell Rep. 23: 148–154, 2004.PubMedCrossRefGoogle Scholar
  3. Baumann, K., De Paolis, A., Costantino, P., Gualberti, G.: The DNA binding site of the protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants.-Plant Cell. 11: 323–333, 1999.PubMedCrossRefGoogle Scholar
  4. Binns, A.N., Tomashow, J.V.: Cell biology of Agrobacterium infection and transformation of plants.-Annu. Rev. Microbiol. 42: 575–606, 1988.CrossRefGoogle Scholar
  5. Capone, I., Spano, L., Cardarelli, M., Bellincampi, D., Petit, A., Costantino, P.: Induction and growth properties of carrot roots with different complements of Agrobacterium rhizogenes T-DNA.-Plant mol. Biol. 13: 43–52, 1989.PubMedCrossRefGoogle Scholar
  6. De Paolis, A., Mauro, M.L., Pomponi, M., Cardarelli, M., Spano, L., Costantino, P.: Localization of agropine-synthesizing functions in the TR region of the root-inducing plasmid of Agrobacterium rhizogenes 1855.-Plasmid 13: 1–17, 1985.PubMedCrossRefGoogle Scholar
  7. Flores, H.E., Medina-Bolivar, F.: Root culture and plant natural products: “unearthing” the hidden half of plant metabolism.-Plant Tissue Cult. Biotechnol. 1: 59–74, 1995.Google Scholar
  8. Flores, H.E., Vivanco, J.M., Loyola-Vargas, V.M.: Radicle biochemistry: the biology of root-specific metabolism.-Trends Plant Sci. 4: 220–226, 1999.PubMedCrossRefGoogle Scholar
  9. Gamborg, O.L., Miller, R.A., Ojima, K.: Nutrient requirements of suspension cultures of soybean root cells.-Exp. Cell Res. 50: 151–158, 1968.PubMedCrossRefGoogle Scholar
  10. Giri, A., Narasu, M.L.: Transgenic hairy roots: recent trends and applications.-Biotechnol. Adv. 18: 1–22, 2000.PubMedCrossRefGoogle Scholar
  11. Guivarch, A., Boccara, M., Prouteau, M., Chriqui, D.: Instability of phenotype and gene expression in long term culture of carrot hairy root clones.-Plant Cell Rep. 19: 43–53, 1999.CrossRefGoogle Scholar
  12. Hooykaas, P.J.J., Klapwijk, P.M., Nuti, M.P., Shilperoot, R.A., Horsch, A.: Transfer of A. tumefaciens Ti plasmid to avirulent Agrobacterium and Rhizobium ex planta.-J. gen. Microbiol. 98: 477–484, 1975.Google Scholar
  13. Huffman, G.A., White, F.F., Gordon, M.P., Nester, E.W.: Hairy root-inducing plasmid: physical map and homology to tumor inducing plasmids.-J. Bacteriol. 157: 269–276, 1984.PubMedGoogle Scholar
  14. Jang, S.I., Kim, H.J., Hwang, K.M., Jekal, S.J., Pae, H.O., Choi, B.M., Yun, Y.G., Kwon, T.O., Chung, H.T., I.M., Y.C: Hepatoprotective effect of baicalin, a major flavones from Scutellaria radix, on acetaminophen-induced liver injury in mice.-Immunopharmacol. Immunotoxicol. 25: 585–594, 2003.PubMedCrossRefGoogle Scholar
  15. Jefferson, R.A.: Assaying chimeric genes in plant: the GUS gene fusion system.-Plant mol. Biol. Rep. 5: 387–405, 1987.CrossRefGoogle Scholar
  16. Jouanin, L., Guerche, P., Pamboukdjian, N., Tourneur, C., Casse-Delbart, F., Tourneur, J.: Structure of T-DNA in plants regenerated from roots transformed by Agrobacterium rhizogenes strain A4.-Mol. gen. Genet. 206: 387–392, 1987.CrossRefGoogle Scholar
  17. Jung, G., Tepfer, D.: Use of genetic transformation by the Ri T-DNA of Agrobacterium rhizogenes to stimulate biomass and tropane alkaloid production in Atropa belladonna and Calystegia sepium roots grown in vitro.-Plant Sci. 50:145–152, 1987.CrossRefGoogle Scholar
  18. Khanuja, S.P.S., Shasany, A.K., Darokar, M.P., Kumar, S.: Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils.-Plant mol. Biol. Rep. 17: 1–7, 1999.CrossRefGoogle Scholar
  19. Koltunow, A.M., Johnson, S.D., Lynch, M., Yoshihara, T. Costantino, P.: Expression of rolB in apomictic Hieracium piloselloides Vill. causes ectopic meristems in planta and changes in ovule formation, where apomixis initiates at higher frequency.-Planta 214: 196–205, 2001.PubMedGoogle Scholar
  20. Kuzovkina, I.N., Guseva, A.V., Alterman, I.E., Karnachuk, R.A.: Flavonoid production in transformed Scutellaria baicalensis roots and ways of its regulation.-Russ. J. Plant Physiol. 48: 448–452, 2001.CrossRefGoogle Scholar
  21. Mano, Y., Nabeshima, S., Matsui, C., Ohkawa, H.: Production of tropane alkaloids by hairy root cultures of Scopolia japonica.-Agr. biol. Chem. 50: 2715–2722, 1986.Google Scholar
  22. Moore, L., Warren, G., Strobel., G.: Involvement of a plasmid in the hairy root disease caused by A. rhizogenes.-Plasmid 2: 617–626, 1979.PubMedCrossRefGoogle Scholar
  23. Morimoto, S., Harioka, T., Shoyama, Y.: Purification and characterization of flavone-specific beta-glucuronidase from callus culture of Scutellaria baicalensis Georgi.-Planta 195: 535–540, 1995.CrossRefGoogle Scholar
  24. Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures.-Physiol. Plant. 15: 473–497, 1962.CrossRefGoogle Scholar
  25. Nilsson, O., Olsson, O.: Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots.-Physiol. Plant. 100: 463–473, 1997.CrossRefGoogle Scholar
  26. Nishikawa, K., Furukawa, H., Fujioka, T., Hiroko, F., Mihashi, K., Shimomura, K., Ishimarua, K.: Flavone production in transformed root cultures of Scutellaria baicalensis Georgi.-Phytochemistry 52: 885–890, 1999.CrossRefGoogle Scholar
  27. Pomponi M. Spa L. Sabbadini M. G. Costanti P. Restriction endonuclease mapping of the root inducing plasmid of Agrobacterium rhizogenes 1855 .-Plasmid 10: 119–129, 1983PubMedCrossRefGoogle Scholar
  28. Rhodes, M.J.C., Robins, R.J., Hamill, J.D., Parr, A.J., Hilton, M.G., Walton, N.J.: Properties of transformed root cultures.-In: Charlwood, B.V., Rhodes, M.J.C., (ed.): Secondary Products from Plant Tissue Culture. Pp. 201–225. Phytochemical Society of Europe, Oxford 1990.Google Scholar
  29. Riker, A.J., Bandfield, W.M., Wright, W.H., Keitt, G.W., Sagen, H.E.: Studies on infectious hairy root of nursery apple tree.-J. agr. Res. (Washington) 41: 507–540, 1930.Google Scholar
  30. Salzman, R.A., Fujita, T., Zhu-Salzman, K., Hasegawa, P.M. Bressan, R.A.: An improved RNA isolation method for plant tissues containing high levels of phenolic compounds or carbohydrates.-Plant mol. Biol. Rep. 17: 11–17, 1999.CrossRefGoogle Scholar
  31. Sambrook, J., Fritsch, E.F., Maniatis, T.: Molecular Cloning: a Laboratory Manual. 3rd Ed.-Cold Spring Harbor Laboratory Press, New York 1989.Google Scholar
  32. Schmulling, T., Schell, J., Spena, A.: Single genes from Agrobacterium rhizogenes influence plant development.-EMBO J. 7: 2621–2629, 1988.PubMedGoogle Scholar
  33. Sevón, N., Oksman-Caldentey, K.M.: Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids.-Planta med. 68: 859–868, 2002.PubMedCrossRefGoogle Scholar
  34. Shieh, D.E., Liu, L.T., Lin, C.C.: Antioxidant and free radical scavenging effect of baicalein, baicalin and wogonin-Anticancer Res. 20: 2861–2865, 2000.PubMedGoogle Scholar
  35. Slightom, J.L., Durand-Tardif, M., Jouanin, L., Tepfer, D.: Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid.-J. biol. Chem. 261: 108–121, 1986.PubMedGoogle Scholar
  36. Taylor, B.H., Amasino, R.M., White, F.F., Nester, E.W., Gordon, M.P.: T-DNA analysis of plants regenerated from hairy root tumor.-Mol. gen. Genet. 201: 554–557, 1985.CrossRefGoogle Scholar
  37. Tepfer, D.: Genetic transformation using Agrobacterium rhizogenes.-Physiol. Plant. 79: 140–146, 1990.CrossRefGoogle Scholar
  38. Tepfer, M., Casse-Delbart, F.: Agrobacterium rhizogenes as a vector for transforming higher plants.-Microbiol. Sci. 4: 24–28, 1987.PubMedGoogle Scholar
  39. Vervliet, G., Holsters, M., Teuchy, H., Van, M.M., Schell, J.: Characterization of different plaque forming and defective temperate phages in Agrobacterium.-J. gen. Virol. 26: 33–48, 1975.PubMedGoogle Scholar
  40. Wang, J.Z., Chen, D.Y., Su, Y.Y.: Analytical study on processing of Scutellaria baicalensis Georgi by HPLC.-Chin. J. chin. Materia med. 19: 340–341, 1994.Google Scholar
  41. White, F.F., Taylor, B.H., Huffman, G.A., Gordon, M.P., Nester, E. W.: Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes.-J. Bacteriol. 164: 33–44, 1985.PubMedGoogle Scholar
  42. White, P.R.: The Cultivation of Animal and Plant Cells.-Ronald Press, New York 1963.Google Scholar
  43. Yamamoto, H., Chatani, N., Kitayama, A.: Flavonoid production in Scutellaria baicalensis callus cultures.-Plant Cell Tissue Organ Cult. 5: 219–222, 1986.CrossRefGoogle Scholar
  44. Yang, L.X., Liu, D., Feng, X.F., Cu, S.L., Yang, J.Y., Tang, X.J., He, L.J., Hu, S.L.: Determination of flavones for Scutellaria baicalensis from different area by HPLC.-Chin. J. chin. Materia med. 27: 166–169, 2002.Google Scholar
  45. Yoshikawa, T., Furuya, T.: Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes.-Plant Cell Rep. 6: 449–453, 1987.Google Scholar
  46. Zehra, M., Banerjee, S., Sharma, S., Kumar, S.: Influence of Agrobacterium rhizogenes strains on biomass and alkaloid productivity in hairy root lines of Hyoscyamus muticus and H. albus.-Planta med. 64: 60–63, 1999.CrossRefGoogle Scholar
  47. Zhou, Y., Hirotani, M., Yoshkava, T., Furuya, T.: Flavonoids and phenylethanoids from hairy roots of Scutellaria baicalensis.-Phytochemistry. 44: 83–87, 1997.CrossRefGoogle Scholar
  48. Zhou, R., Gu, G.: Pharmaceutical study of huang-qin.-Chin. Medicine 13: 28–29, 1991.Google Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2008

Authors and Affiliations

  1. 1.Institute of Cell Biology, School of life SciencesLanzhou UniversityLanzhouP.R. China

Personalised recommendations