Biologia Plantarum

, Volume 51, Issue 1, pp 93–97 | Cite as

Effect of seed soaking with thiols on the antioxidant enzymes and photosystem activities in wheat subjected to water stress

  • N. S. Nathawat
  • J. S. Nair
  • S. M. Kumawat
  • N. S. Yadava
  • G. Singh
  • N. K. Ramaswamy
  • M. P. Sahu
  • S. F. D’Souza
Original Papers


Photosystem 1 and 2 and antioxidant enzyme activities were determined in wheat (Triticum aestivum L. cv. Sonalika) leaves. Seedlings from both control seeds and seeds soaked in solutions like dithiothreitol, thioglycollic acid and thiourea were subjected to water stress induced by polyethylene glycol. Photosystem 1 and 2 activities were less inhibited by water stress due to seed soaking with sulphydryl compounds. The changes in activities of antioxidant enzymes induced by water stress were higher in seedlings from thiol-pretreated seeds than from water-soaked seeds.

Additional key words

oxygen evolution peroxidase photosynthesis polyethylene glycol seed pretreatment sulphydryl compounds 



coefficient of absorbance


ascorbate peroxidase










ethylenediaminetetraacetic acid


guaiacol peroxidase


glutathione reductase


glutathione reduced form


glutathione oxidised form




methyl viologen


nicotinamide adenine dinucleotide oxidised form


nicotinamide adenine dinucleotide phosphate reduced form


nitroblue tetrazolium


polyethylene glycol

PS 1, PS 2

photosystems 1 and 2


reactive oxygen species




superoxide dismutase


thioglycolic acid




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1–15, 1949.PubMedGoogle Scholar
  2. Asada, K.: The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons.-Annu. Rev. Plant Physiol. mol. Biol. 50: 601–639, 1999.CrossRefGoogle Scholar
  3. Becana, M., Aparicio-Tejo, P., Irigoyen, J.J., Sanchez-Diaz, M.: Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa.-Plant Physiol. 82: 1169–1171, 1986.PubMedGoogle Scholar
  4. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.-Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  5. Burman, U., Garg, B.K., Kathju, S.: Interactive effects of thiourea and phosphorus on clusterbean under water stress.-Biol. Plant. 48: 61–65, 2004.CrossRefGoogle Scholar
  6. Chance, B., Maehly, A.C.: Assay of catalase and peroxidases.-Methods Enzymol. 2: 764–755, 1955.CrossRefGoogle Scholar
  7. De Agazio, M., Zacchini, M.: Dimethylthiourea, a hydrogen peroxide trap, partially prevents stress effects and ascorbate peroxidase increase in spermidine-treated maize roots.-Plant Cell Environ. 24: 237–244, 2001.CrossRefGoogle Scholar
  8. Deneke, S.M.: Thiol-based antioxidants.-Curr. Topics Cell Regul. 36: 151–180, 2000.Google Scholar
  9. Giannopolitis, C.N., Ries, S.K: Superoxide dismutase. I. Occurrence in higher plants.-Plant Physiol. 59: 309–314, 1977.PubMedGoogle Scholar
  10. Hoagland, D.R., Arnon, D.I.: The water culture method for growing plants without soil.-California agr. Experimental Station Circular 347: 1–39, 1938.Google Scholar
  11. Horling, F., Lamkemeyer, P., Konnig, J., Finkemeir, L., Kandlbinder, A., Baier, M., Dietz, K.-J.: Divergent light-, ascorbate-, and oxidative stress-dependent regulation expression of the peroxiredoxin gene family in Arabidopsis.-Plant Physiol. 131, 317–325, 2003.PubMedCrossRefGoogle Scholar
  12. Izawa, S.: Acceptors and donors for chloroplast electron transport.-Methods Enzymol. 69: 413–434, 1980.Google Scholar
  13. Izawa, S., Good, N.E.: The stoichiometric relation of phosphorylation to electron transport in isolated chloroplast.-Biochim. biophys. Acta 162: 380–391, 1968.PubMedCrossRefGoogle Scholar
  14. Malanga, G., Kozak, R.G., Puntarulo, S.: N-acetyl cysteine-dependent protection against UV-B damage in two photosynthetic organisms.-Plant Sci. 141: 129–137, 1999.CrossRefGoogle Scholar
  15. Mannervik, B., Guthenberg, C.: Glutathione transferase (human placenta).-Methods Enzymol. 77: 231–235, 1981.PubMedGoogle Scholar
  16. Meister, A., Anderson, M.E.: Glutathione.-Annu. Rev. Biochem. 52: 711–760, 1983.PubMedCrossRefGoogle Scholar
  17. Misra, A.N., Biswal, U.C.: Effect of phytohormone on chlorophyll degradation of chloroplast in vivo and in vitro.-Protoplasma 105: 1–8, 1980.CrossRefGoogle Scholar
  18. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast.-Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  19. Nayak, L., Biswal, B., Ramaswamy, N.K., Iyer, R.K., Nair, J.S., Biswal, U.C.: Ultraviolet-A induced changes in photosystem II of thylakoids: effects of senescence and high growth temperature.-J. Photochem. Photobiol. B 70: 59–65, 2003.PubMedCrossRefGoogle Scholar
  20. Noctor, G., Foyer, C.H.: Ascorbate and glutathione: keeping active oxygen under control.-Annu. Rev. Plant Physiol. mol. Biol. 49: 249–279, 1998.CrossRefGoogle Scholar
  21. Sahu, M.P., Singh, D.: Role of thiourea in improving productivity of wheat (Triticum aestivum L.).-Plant Growth Regul. 14: 169–173, 1995.Google Scholar
  22. Sahu, M.P., Solanki, N.S.: Role of sulphydryl compounds in improving dry matter partitioning and grain production of maize (Zea mays L.).-J. Agron. Crop Sci. 167: 356–359, 1991.Google Scholar
  23. Sahu, M.P., Solanki, N.S., Dashora, L.N.: Effects of thiourea, thiamine and ascorbic acid on growth and yield of maize (Zea mays L.).-J. Agron. Crop Sci. 171: 65–69, 1993.CrossRefGoogle Scholar
  24. Sen, C.K.: Cellular thiols and redox-regulated signal transduction.-Curr. Topics cell. Regul. 36: 1–30, 2000.Google Scholar
  25. Shaedle, M., Bassham, J.A.: Chloroplast glutathione reductase.-Plant Physiol. 59: 1011–1012, 1977.CrossRefGoogle Scholar
  26. Werdan, K., Heldt, H.W., Milovancev, M.: The role of pH in the regulation of carbon fixation in the chloroplast stroma: studies on CO2 fixation in the light and dark.-Biochim. biophys. Acta 396: 276–282, 1975.PubMedCrossRefGoogle Scholar
  27. Zhu, B-Z., Antholine, W.E., Frei, B.: Thiourea protects against copper-induced oxidative damage by formation of a redoxinactive thiourea-copper complex.-Free Radical. Biol. Medicine 32: 1333–1338, 2002.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2007

Authors and Affiliations

  • N. S. Nathawat
    • 1
  • J. S. Nair
    • 2
  • S. M. Kumawat
    • 1
  • N. S. Yadava
    • 1
  • G. Singh
    • 1
  • N. K. Ramaswamy
    • 2
  • M. P. Sahu
    • 1
  • S. F. D’Souza
    • 2
  1. 1.Rajasthan Agricultural UniversityBikanerIndia
  2. 2.Nuclear Agriculture and Biotechnology DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations