Biologia Plantarum

, Volume 50, Issue 4, pp 603–609 | Cite as

Water relations in Norway spruce trees growing at ambient and elevated CO2 concentrations

  • P. Kupper
  • A. Sellin
  • Z. Klimánková
  • R. Pokorný
  • J. Puértolas
Original Paper


Water relations were studied in Norway spruce [Picea abies (L.) Karst.] trees grown at ambient (AC, 350 μmol mol−1) and elevated (EC, 700 μmol mol−1) CO2 concentrations under temperate water stress. The results suggested that both crown position and variability in atmospheric CO2 concentration are responsible for different patterns of crown water relations. Mean hourly sap flux density (FSA) showed higher values in upper crown position in comparison with the whole crown in both AC and EC treatments. Mean soil-to-leaf hydraulic conductance (GTsa) was 1.4 times higher for the upper crown than that calculated across the whole crown for the trees in AC. However, GTsa did not vary significantly with crown position in EC trees, suggesting that elevated CO2 may mitigate differences in hydraulic supply for different canopy layers. The trees in EC treatment exhibited significantly higher values of FSA measured on the whole crown level and slightly higher soil water content compared to AC treatment, suggesting more economical use of soil water and therefore an advantage under water-limited conditions.

Additional key words

CO2 enrichment global change Picea abies (L.) Karst sap flux shoot water potential soil water limitation whole-tree hydraulic conductance 



soil water content


xylem sap flux expressed by sapwood transverse area, gs-stomatal conductance


soil-to-leaf hydraulic conductance


soil-to-leaf hydraulic conductance expressed by projected leaf area


soil-to-leaf hydraulic conductance expressed by sapwood transverse area


net photosynthetic rate


relative water content of sapwood


vapour pressure deficit


predawn shoot water potential


soil water potential


daily shoot water potential


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atwell, B.J., Henry, M.L., Whitehead, D.: Sapwood development in Pinus radiata trees grown for three years at ambient and elevated carbon dioxide partial pressures.-Tree Physiol. 23: 13–21, 2003.PubMedGoogle Scholar
  2. Bond, B.J., Farnsworth, B.T., Coulombe, R.A., Winner, W.E.: Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance.-Oecologia 120: 183–192, 1999.CrossRefGoogle Scholar
  3. Brodribb, T.J., Holbrook, N.M., Gutierrez, M.V.: Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees.-Plant Cell Environ. 25: 1435–1444, 2002.CrossRefGoogle Scholar
  4. Bunce, J.A.: Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions.-Oecologia 140: 1–10, 2004.PubMedCrossRefGoogle Scholar
  5. Centritto, M., Magnani, F., Lee, H.S.J., Jarvis, P.G.: Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings. II. Photosynthetic capacity and water relations.-New Phytol. 141: 141–154, 1999.CrossRefGoogle Scholar
  6. Ceulemans, R., Jach, M.E., Van De Velde, R., Lin, J.X., Stevens, M.: Elevated atmospheric CO2 alters wood production, wood quality and wood strength of Scots pine (Pinus sylvestris L.) after three years of enrichment.-Global Change Biol. 8: 153–162, 2002.CrossRefGoogle Scholar
  7. De Luis, I., Irigoyen, J.J., Sanchez-Diaz, M.: Elevated CO2 enhances plant growth in droughted N2-fixing alfalfa without improving water status.-Physiol. Plant. 107: 84–89, 1999.CrossRefGoogle Scholar
  8. Engel, V.C., Griffin, K.L., Murthy, R., Patterson, L., Klimas, C., Potosnak, M.: Growth CO2 concentration modifies the transpiration response of Populus deltoides to drought and vapor pressure deficit.-Tree Physiol. 24: 1137–1145, 2004.PubMedGoogle Scholar
  9. Heath, J., Kerstiens, G.: Effects of elevated CO2 on leaf gas exchange in beech and oak at two levels of nutrient supply: consequences for sensitivity to drought in beech.-Plant Cell Environ. 20: 57–67, 1997.CrossRefGoogle Scholar
  10. Herrick, J.D., Maherali, H., Thomas, R.B.: Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment.-New Phytol. 162: 387–396, 2004.CrossRefGoogle Scholar
  11. Hubbard, R.M., Ryan, M.G., Stiller, V., Sperry, J.S.: Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine.-Plant Cell Environ. 24: 113–121, 2001.CrossRefGoogle Scholar
  12. Jarvis, A.J., Mansfield, T.A., Davies, W.J.: Stomatal behaviour, photosynthesis and transpiration under rising CO2.-Plant Cell Environ. 22: 639–648, 1999.CrossRefGoogle Scholar
  13. Jerez, M., Dean, T.J., Roberts, S.D., Evans, D.L.: Patterns of branch permeability with crown depth among loblolly pine families differing in growth rate and crown size.-Trees 18: 145–150, 2004.Google Scholar
  14. Johnson, J.D., Tognetti, R., Paris, P.: Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO2.-Physiol. Plant. 115: 93–100, 2002.PubMedCrossRefGoogle Scholar
  15. Köstner, B., Granier, A., Čermák, J.: Sapflow measurements in forest stands: methods and uncertainties.-Ann. Forest Sci. 55: 13–27, 1998.Google Scholar
  16. Long, S.P.: Understanding the impacts of rising CO2: the contribution of environmental physiology.-In: Press, M.C., Scholes, J.D., Barcer, M.G. (ed.): Physiological Plant Ecology. Pp. 263–282. Blackwell Science, Oxford 1999.Google Scholar
  17. Marek, M.V., Šprtová, M., Urban, O., Špunda, V.: Chlorophyll a fluorescence response of Norway spruce needles to the long-term effect of elevated CO2 in relation to their position within the canopy.-Photosynthetica 39: 437–455, 2001.CrossRefGoogle Scholar
  18. Marek, M.V., Urban, O., Šprtová, M., Pokorný, R., Rosová, Z., Kulhavý, J.: Photosynthetic assimilation of sun versus shade Norway spruce [Picea abies (L.) Karst] needles under the long-term impact of elevated CO2 concentration.-Photosynthetica 40: 259–267, 2002.CrossRefGoogle Scholar
  19. Mayr, S., Rothart, B., Dämon, B.: Hydraulic efficiency and safety of leader shoots and twigs in Norway spruce growing at the alpine timberline.-J. exp. Bot. 54: 2563–2568, 2003.PubMedCrossRefGoogle Scholar
  20. Medlyn, B.E., Barton, C.V.M., Broadmeadow, M,S.J., Ceulemans, R., De Angelis, P., Forstreuter, M., Freeman, M., Jackson, S.B., Kellomäki, S., Laitat, E., Rey, A., Roberntz, P., Sigurdsson, B.D., Strassemeyer, J., Wang, K., Curtis, P.S., Jarvis, P.G.: Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis.-New Phytol. 149: 247–264, 2001.CrossRefGoogle Scholar
  21. Meinzer, F.C.: Functional convergence in plant responses to the environment.-Oecologia 134: 1–11, 2003.PubMedCrossRefGoogle Scholar
  22. Niinemets, Ü., Kull, O., Tenhunen, J.D.: An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance.-Tree Physiol. 18: 681–696, 1998.PubMedGoogle Scholar
  23. Prichard, S.G., Rogers, H.H., Prior, S.A., Peterson, C.M.: Elevated CO2 and plant structure: a review.-Global Change Biol. 5: 807–837, 1999.CrossRefGoogle Scholar
  24. Protz, C.G., Silins, U., Lieffers, V.J.: Reduction in branch sapwood hydraulic permeability as a factor limiting survival of lower branches of lodgepole pine.-Can. J. Forest Res. 30: 1088–1095, 2000.CrossRefGoogle Scholar
  25. Santiago, L.S., Goldstein, G., Meinzer, F.C., Fisher, J.B., Machado, K., Woodruff, D., Jones, T.: Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.-Oecologia 140: 543–550, 2004.PubMedCrossRefGoogle Scholar
  26. Saxe, H., Ellsworth, D.S., Heath, J.: Tree and forest functioning in an enriched CO2 atmosphere.-New Phytol. 139: 395–436, 1998.CrossRefGoogle Scholar
  27. Schulte, M., Herschbach, C., Rennenberg, H.: Interactive effects of elevated atmospheric CO2, mycorrhization and drought on long-distance transport of reduced sulphur in young pedunculate oak trees (Quercus robur L.).-Plant Cell Environ. 21: 917–926, 1998.CrossRefGoogle Scholar
  28. Schäfer, K.V.R., Oren, R., Lai, C., Katul, G.G.: Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration.-Global Change Biol. 8: 895–911, 2002.CrossRefGoogle Scholar
  29. Sellin, A., Kupper, P.: Within-crown variation in leaf conductance of Norway spruce: effects of irradiance, vapour pressure deficit, leaf water status and plant hydraulic constraints.-Ann. Forest Sci. 61: 419–429, 2004.CrossRefGoogle Scholar
  30. Sellin, A., Kupper, P.: Effects of light availability versus hydraulic constraints on stomatal responses within a crown of silver birch.-Oecologia 142: 388–397, 2005.PubMedCrossRefGoogle Scholar
  31. Tognetti, R., Longobucco, A., Miglietta, F., Rashi, A.: Transpiration and stomatal behaviour of Quercus ilex plants during the summer in a Mediterranean carbon dioxide spring.-Plant Cell Environ. 21: 613–622, 1998.CrossRefGoogle Scholar
  32. Tognetti, R., Longobucco, A., Miglietta, F., Rashi, A.: Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring.-Tree Physiol. 19: 261–270, 1999.PubMedGoogle Scholar
  33. Tognetti, R., Peñuelas, J.: Nitrogen and carbon concentrations, and stable isotope ratios in Mediterranean shrubs growing in the proximity of a CO2 spring.-Biol. Plant. 46: 411–418, 2003.CrossRefGoogle Scholar
  34. Tognetti, R., Raschi, A., Jones, M.B.: Seasonal patterns of tissue water relations in three Mediterranean shrubs cooccurring at a natural CO2 spring.-Plant Cell Environ. 23: 1341–1351, 2000.CrossRefGoogle Scholar
  35. Tyree, M.T., Ewers, F.W.: The hydraulic architecture of trees and other woody plants.-New Phytol. 119: 345–360, 1991.CrossRefGoogle Scholar
  36. Urban, O., Janouš, D., Pokorný, R., Marková, I., Pavelka, M., Fojtík, Z., Šprtová, M., Kalina, J., Marek, M.V.: Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 concentration.-Photosynthetica 39: 395–401, 2001.CrossRefGoogle Scholar
  37. Whitehead, D.: Regulation of stomatal conductance and transpiration in forest canopies.-Tree Physiol. 18: 633–644, 1998.PubMedGoogle Scholar
  38. Wullschleger, S.D., Norby, R.J.: Sap velocity and canopy transpiration in a sweetgum stand exposed to free-air CO2 enrichment (FACE).-New Phytol. 150: 489–498, 2001.CrossRefGoogle Scholar
  39. Wullschleger, S.D., Tchaplinski, T.J., Norby, R.J.: Plant water relations at elevated CO2-implications for water-limited environments.-Plant Cell Environ. 25: 319–331, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR, Praha 2006

Authors and Affiliations

  • P. Kupper
    • 1
  • A. Sellin
    • 1
  • Z. Klimánková
    • 2
  • R. Pokorný
    • 2
  • J. Puértolas
    • 3
  1. 1.Institute of Botany and EcologyUniversity of TartuTartuEstonia
  2. 2.Institute of Landscape Ecology, AS CRBrnoCzech Republic
  3. 3.Centro Nacional de Mejora Forestal “El Serranillo”GuadalajaraSpain

Personalised recommendations