Skip to main content
Log in

Water relations in Norway spruce trees growing at ambient and elevated CO2 concentrations

  • Original Paper
  • Published:
Biologia Plantarum

Abstract

Water relations were studied in Norway spruce [Picea abies (L.) Karst.] trees grown at ambient (AC, 350 μmol mol−1) and elevated (EC, 700 μmol mol−1) CO2 concentrations under temperate water stress. The results suggested that both crown position and variability in atmospheric CO2 concentration are responsible for different patterns of crown water relations. Mean hourly sap flux density (FSA) showed higher values in upper crown position in comparison with the whole crown in both AC and EC treatments. Mean soil-to-leaf hydraulic conductance (GTsa) was 1.4 times higher for the upper crown than that calculated across the whole crown for the trees in AC. However, GTsa did not vary significantly with crown position in EC trees, suggesting that elevated CO2 may mitigate differences in hydraulic supply for different canopy layers. The trees in EC treatment exhibited significantly higher values of FSA measured on the whole crown level and slightly higher soil water content compared to AC treatment, suggesting more economical use of soil water and therefore an advantage under water-limited conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CSoil :

soil water content

FSA :

xylem sap flux expressed by sapwood transverse area, gs-stomatal conductance

GT :

soil-to-leaf hydraulic conductance

GTla :

soil-to-leaf hydraulic conductance expressed by projected leaf area

GTsa :

soil-to-leaf hydraulic conductance expressed by sapwood transverse area

PN :

net photosynthetic rate

RWCW :

relative water content of sapwood

VPD:

vapour pressure deficit

ΨPd :

predawn shoot water potential

ΨS :

soil water potential

ΨX :

daily shoot water potential

References

  • Atwell, B.J., Henry, M.L., Whitehead, D.: Sapwood development in Pinus radiata trees grown for three years at ambient and elevated carbon dioxide partial pressures.-Tree Physiol. 23: 13–21, 2003.

    PubMed  CAS  Google Scholar 

  • Bond, B.J., Farnsworth, B.T., Coulombe, R.A., Winner, W.E.: Foliage physiology and biochemistry in response to light gradients in conifers with varying shade tolerance.-Oecologia 120: 183–192, 1999.

    Article  Google Scholar 

  • Brodribb, T.J., Holbrook, N.M., Gutierrez, M.V.: Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees.-Plant Cell Environ. 25: 1435–1444, 2002.

    Article  Google Scholar 

  • Bunce, J.A.: Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions.-Oecologia 140: 1–10, 2004.

    Article  PubMed  Google Scholar 

  • Centritto, M., Magnani, F., Lee, H.S.J., Jarvis, P.G.: Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings. II. Photosynthetic capacity and water relations.-New Phytol. 141: 141–154, 1999.

    Article  Google Scholar 

  • Ceulemans, R., Jach, M.E., Van De Velde, R., Lin, J.X., Stevens, M.: Elevated atmospheric CO2 alters wood production, wood quality and wood strength of Scots pine (Pinus sylvestris L.) after three years of enrichment.-Global Change Biol. 8: 153–162, 2002.

    Article  Google Scholar 

  • De Luis, I., Irigoyen, J.J., Sanchez-Diaz, M.: Elevated CO2 enhances plant growth in droughted N2-fixing alfalfa without improving water status.-Physiol. Plant. 107: 84–89, 1999.

    Article  Google Scholar 

  • Engel, V.C., Griffin, K.L., Murthy, R., Patterson, L., Klimas, C., Potosnak, M.: Growth CO2 concentration modifies the transpiration response of Populus deltoides to drought and vapor pressure deficit.-Tree Physiol. 24: 1137–1145, 2004.

    PubMed  Google Scholar 

  • Heath, J., Kerstiens, G.: Effects of elevated CO2 on leaf gas exchange in beech and oak at two levels of nutrient supply: consequences for sensitivity to drought in beech.-Plant Cell Environ. 20: 57–67, 1997.

    Article  Google Scholar 

  • Herrick, J.D., Maherali, H., Thomas, R.B.: Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment.-New Phytol. 162: 387–396, 2004.

    Article  Google Scholar 

  • Hubbard, R.M., Ryan, M.G., Stiller, V., Sperry, J.S.: Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine.-Plant Cell Environ. 24: 113–121, 2001.

    Article  Google Scholar 

  • Jarvis, A.J., Mansfield, T.A., Davies, W.J.: Stomatal behaviour, photosynthesis and transpiration under rising CO2.-Plant Cell Environ. 22: 639–648, 1999.

    Article  CAS  Google Scholar 

  • Jerez, M., Dean, T.J., Roberts, S.D., Evans, D.L.: Patterns of branch permeability with crown depth among loblolly pine families differing in growth rate and crown size.-Trees 18: 145–150, 2004.

    Google Scholar 

  • Johnson, J.D., Tognetti, R., Paris, P.: Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO2.-Physiol. Plant. 115: 93–100, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Köstner, B., Granier, A., Čermák, J.: Sapflow measurements in forest stands: methods and uncertainties.-Ann. Forest Sci. 55: 13–27, 1998.

    Google Scholar 

  • Long, S.P.: Understanding the impacts of rising CO2: the contribution of environmental physiology.-In: Press, M.C., Scholes, J.D., Barcer, M.G. (ed.): Physiological Plant Ecology. Pp. 263–282. Blackwell Science, Oxford 1999.

    Google Scholar 

  • Marek, M.V., Šprtová, M., Urban, O., Špunda, V.: Chlorophyll a fluorescence response of Norway spruce needles to the long-term effect of elevated CO2 in relation to their position within the canopy.-Photosynthetica 39: 437–455, 2001.

    Article  CAS  Google Scholar 

  • Marek, M.V., Urban, O., Šprtová, M., Pokorný, R., Rosová, Z., Kulhavý, J.: Photosynthetic assimilation of sun versus shade Norway spruce [Picea abies (L.) Karst] needles under the long-term impact of elevated CO2 concentration.-Photosynthetica 40: 259–267, 2002.

    Article  CAS  Google Scholar 

  • Mayr, S., Rothart, B., Dämon, B.: Hydraulic efficiency and safety of leader shoots and twigs in Norway spruce growing at the alpine timberline.-J. exp. Bot. 54: 2563–2568, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Medlyn, B.E., Barton, C.V.M., Broadmeadow, M,S.J., Ceulemans, R., De Angelis, P., Forstreuter, M., Freeman, M., Jackson, S.B., Kellomäki, S., Laitat, E., Rey, A., Roberntz, P., Sigurdsson, B.D., Strassemeyer, J., Wang, K., Curtis, P.S., Jarvis, P.G.: Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis.-New Phytol. 149: 247–264, 2001.

    Article  Google Scholar 

  • Meinzer, F.C.: Functional convergence in plant responses to the environment.-Oecologia 134: 1–11, 2003.

    Article  PubMed  Google Scholar 

  • Niinemets, Ü., Kull, O., Tenhunen, J.D.: An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance.-Tree Physiol. 18: 681–696, 1998.

    PubMed  Google Scholar 

  • Prichard, S.G., Rogers, H.H., Prior, S.A., Peterson, C.M.: Elevated CO2 and plant structure: a review.-Global Change Biol. 5: 807–837, 1999.

    Article  Google Scholar 

  • Protz, C.G., Silins, U., Lieffers, V.J.: Reduction in branch sapwood hydraulic permeability as a factor limiting survival of lower branches of lodgepole pine.-Can. J. Forest Res. 30: 1088–1095, 2000.

    Article  Google Scholar 

  • Santiago, L.S., Goldstein, G., Meinzer, F.C., Fisher, J.B., Machado, K., Woodruff, D., Jones, T.: Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.-Oecologia 140: 543–550, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Saxe, H., Ellsworth, D.S., Heath, J.: Tree and forest functioning in an enriched CO2 atmosphere.-New Phytol. 139: 395–436, 1998.

    Article  Google Scholar 

  • Schulte, M., Herschbach, C., Rennenberg, H.: Interactive effects of elevated atmospheric CO2, mycorrhization and drought on long-distance transport of reduced sulphur in young pedunculate oak trees (Quercus robur L.).-Plant Cell Environ. 21: 917–926, 1998.

    Article  CAS  Google Scholar 

  • Schäfer, K.V.R., Oren, R., Lai, C., Katul, G.G.: Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration.-Global Change Biol. 8: 895–911, 2002.

    Article  Google Scholar 

  • Sellin, A., Kupper, P.: Within-crown variation in leaf conductance of Norway spruce: effects of irradiance, vapour pressure deficit, leaf water status and plant hydraulic constraints.-Ann. Forest Sci. 61: 419–429, 2004.

    Article  Google Scholar 

  • Sellin, A., Kupper, P.: Effects of light availability versus hydraulic constraints on stomatal responses within a crown of silver birch.-Oecologia 142: 388–397, 2005.

    Article  PubMed  Google Scholar 

  • Tognetti, R., Longobucco, A., Miglietta, F., Rashi, A.: Transpiration and stomatal behaviour of Quercus ilex plants during the summer in a Mediterranean carbon dioxide spring.-Plant Cell Environ. 21: 613–622, 1998.

    Article  Google Scholar 

  • Tognetti, R., Longobucco, A., Miglietta, F., Rashi, A.: Water relations, stomatal response and transpiration of Quercus pubescens trees during summer in a Mediterranean carbon dioxide spring.-Tree Physiol. 19: 261–270, 1999.

    PubMed  Google Scholar 

  • Tognetti, R., Peñuelas, J.: Nitrogen and carbon concentrations, and stable isotope ratios in Mediterranean shrubs growing in the proximity of a CO2 spring.-Biol. Plant. 46: 411–418, 2003.

    Article  Google Scholar 

  • Tognetti, R., Raschi, A., Jones, M.B.: Seasonal patterns of tissue water relations in three Mediterranean shrubs cooccurring at a natural CO2 spring.-Plant Cell Environ. 23: 1341–1351, 2000.

    Article  Google Scholar 

  • Tyree, M.T., Ewers, F.W.: The hydraulic architecture of trees and other woody plants.-New Phytol. 119: 345–360, 1991.

    Article  Google Scholar 

  • Urban, O., Janouš, D., Pokorný, R., Marková, I., Pavelka, M., Fojtík, Z., Šprtová, M., Kalina, J., Marek, M.V.: Glass domes with adjustable windows: A novel technique for exposing juvenile forest stands to elevated CO2 concentration.-Photosynthetica 39: 395–401, 2001.

    Article  Google Scholar 

  • Whitehead, D.: Regulation of stomatal conductance and transpiration in forest canopies.-Tree Physiol. 18: 633–644, 1998.

    PubMed  Google Scholar 

  • Wullschleger, S.D., Norby, R.J.: Sap velocity and canopy transpiration in a sweetgum stand exposed to free-air CO2 enrichment (FACE).-New Phytol. 150: 489–498, 2001.

    Article  Google Scholar 

  • Wullschleger, S.D., Tchaplinski, T.J., Norby, R.J.: Plant water relations at elevated CO2-implications for water-limited environments.-Plant Cell Environ. 25: 319–331, 2002.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kupper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kupper, P., Sellin, A., Klimánková, Z. et al. Water relations in Norway spruce trees growing at ambient and elevated CO2 concentrations. Biol Plant 50, 603–609 (2006). https://doi.org/10.1007/s10535-006-0095-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-006-0095-0

Additional key words

Navigation