Biologia Plantarum

, Volume 50, Issue 3, pp 421–424 | Cite as

Variability for the in vitro culture response in tomato recombinant inbred lines

  • G. R. Pratta
  • R. Zorzoli
  • L. A. Picardi
  • E. M. Valle
Brief Communication


The aim of this work was to estimate genetic variability for in vitro culture response of recombinant inbred lines (RILs) of the genus Lycopersicon. The callus percentage (C), the regeneration percentage (R) and the productivity rate (PR) were evaluated 45 d after culture initiation in a set of 16 elite tomato RILs and their parents. The narrow sense heritability (h2) values were 0.38 ± 0.04 for C, 0.46 ± 0.04 for R, and 0.28 ± 0.03 for R, while the genetic correlation (r g ) values were −0.96 ± 0.07 between C and R, 0.81 ± 0.14 between PR and R, and −0.79 ± 0.16 between PR and C. Three AFLP markers associated to the in vitro traits were identified.

Additional key words

amplified fragment length polymorphism (AFLP) callus production Lycopersicon esculentum Lycopersicon pimpinellifolium plant breeding shoot formation 



callus percentage


narrow sense heritability


productivity rate


regeneration percentage


genetic correlation


recombinant inbred lines


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhatia, P., Ashwath, N.: Comparative performance of micropropagated and seed-grown tomato plants.-Biol. Plant. 48: 625–628, 2004.CrossRefGoogle Scholar
  2. Blears, M.J., De Grandis, S.A., Lee, H., Trevors, J.T.: Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications.-J. ind. Microbiol. Biotechnol. 21: 99–114, 1998.Google Scholar
  3. Flores Berrios, E., Gentzbittel, L., Kayyal, H., Alibert, G., Sarrafi, A.: AFLP mapping of QTLs for in vitro organogenesis traits using recombinant inbred lines in sunflower (Helianthus annuus L.).-Theor. appl. Genet. 101: 1299–1306, 2000.Google Scholar
  4. Frankerberger, E.A., Hasegawa, P.M., Tigchelaar, E.C.: Diallel analysis of shoot-forming capacity among selected tomato genotypes.-Z. Pflanzenphysiol. 102: 233–242, 1981.Google Scholar
  5. Halamkova, E., Vagera, J., Ohnoutkova, L.: Regeneration capacity of calli derived from immature embryos in spring barley cultivars.-Biol. Plant. 48: 313–316, 2004.Google Scholar
  6. Kearsey, M.J., Pooni, H.S.: The Genetical Analysis of Quantitative Traits. First Edition.-Chapman & Hall, London 1996.Google Scholar
  7. Koornneef, M., Bade, J., Hanhart, C., Horsman, K., Schel, J., Soppe, W., Verkek, R., Zabel, P.: Characterization and mapping of a gene controlling shoot regeneration in tomato.-Plant J. 3: 131–141, 1993.Google Scholar
  8. Kuroda, S., Kato, H., Ikeda, R.: Heterosis and combining ability for callus growth rate in rice.-Crop Sci. 38: 933–936, 1998.Google Scholar
  9. Nestares, G., Zorzoli, R., Mroginski, L.A., Picardi, L.A.: Cytoplasm effects on the regeneration ability of sunflower.-Plant Breed. 117: 188–190, 1998.Google Scholar
  10. Ogburia, M.N.: Somatic embryogenesis, plantlet regeneration and micropropagation of cultivars and F1 hybrids of Manihot esculenta.-Biol. Plant. 47: 429–432, 2003/4.Google Scholar
  11. Pratta, G., Canepa, L.N., Zorzoli, R., Picardi, L.A.: Diallel analysis of in vitro culture traits in the genus Lycopersicon.-HortScience 38: 110–112, 2003.Google Scholar
  12. Pratta, G., Zorzoli, R., Picardi, L.A.: Intra and interspecific variability of in vitro culture response in Lycopersicon (tomatoes).-Braz. J. Genet. 20: 75–78, 1997.CrossRefGoogle Scholar
  13. Pratta, G., Zorzoli, R., Picardi, L.A., Valle, E.M.: Tomato recombinant inbred lines characterized by AFLP markers-Basic appl. Genet. 15: 134, 2002.Google Scholar
  14. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples).-Biometrika 52: 591–611, 1965.Google Scholar
  15. Takashina, T., Suzuki, T., Egashira, H., Imanishi, S.: New molecular markers linked with the high shoot regeneration capacity of the wild tomato species Lycopersicon chilense.-Breed. Sci. 48: 109–113, 1998.Google Scholar
  16. Tal, M., Dehan, K., Heikin, H.: Morphogenetic potential of cultural leaf sections of cultivated and wild species of tomato.-Ann. Bot. 41: 937–941, 1977.Google Scholar
  17. Tanksley, S.D.: Mapping polygenes.-Annu. Rev. Genet. 27: 205–233, 1993.CrossRefPubMedGoogle Scholar
  18. Torelli, A., Soragni, E., Bolchi, A., Petrucco, S., Ottonello, S., Branca, C.: New potential markers of in vitro tomato morphogenesis identified by mRNA differential display.-Plant mol. Biol. 32: 891–900, 1996.CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Praha 2006

Authors and Affiliations

  • G. R. Pratta
    • 1
    • 2
  • R. Zorzoli
    • 2
  • L. A. Picardi
    • 2
  • E. M. Valle
    • 1
  1. 1.Fac. Cs. Bioq. Farm., UNRIBR - CONICETRosarioArgentina
  2. 2.Catedra de Genetica, Facultad de Ciencias Agrarias UNRCIUNRZavallaArgentina

Personalised recommendations