Advertisement

Biologia Plantarum

, Volume 50, Issue 2, pp 287–290 | Cite as

Circumnutation of Arabidopsis thaliana inflorescence stems

  • N. Someya
  • K. Niinuma
  • M. Kimura
  • I. Yamaguchi
  • H. Hamamoto
Brief Communication

Abstract

Time-lapse monitoring using infrared imaging revealed a distinct change in circumnutatory behaviour of Arabidopsis inflorescence stems by dark treatment, which drastically increased curvature and decreased nutation frequency. Re-irradiation during dark treatment had different effect on the nutation frequency and the curvature, suggesting that radiation condition controls them through different mechanism.

Additional key words

curvature development differential growth internal oscillator nutation frequency revolving movement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson-Bernadas, C., Cornelissen, G., Turner, C.M., Koukkari, W.L.: Rhythmic nature of thigmomorphogenesis and thermal stress of Phaseolus vulgaris L. shoots.-J. Plant Physiol. 151: 575–580, 1997.Google Scholar
  2. Antonsen, F.: Biophysical Studies of Plant Growth Movements in Microgravity and Under 1 g Conditions.-Thesis. Norweign University of Science and Technology, Trondheim 1998.Google Scholar
  3. Barlow, P.W., Parker, J.S., Brain, P.: Oscillations of axial plant organs.-Adv. Space Res. 14: 149–158, 1994.PubMedCrossRefGoogle Scholar
  4. Brown, A.H.: Circumnutations: from Darwin to space flights.-Plant Physiol. 101: 345–348, 1993.PubMedGoogle Scholar
  5. Care, A.F., Nefed'ev, L., Bonnet, B., Millet, B., Badot, P.M.: Cell elongation and revolving movement in Phaseolus vulgaris L. twining shoots.-Plant Cell Physiol. 39: 914–921, 1998.Google Scholar
  6. Darwin, C., Darwin, F.: The Power of Movement in Plants.-John Murray, London 1880.Google Scholar
  7. Ginzo, H.D., Decima, E.E.: Weak static magnetic fields increase the speed of circumnutation in cucumber (Cucumis sativus L.) tendrils.-Experientia 51: 1090–1093, 1995.CrossRefGoogle Scholar
  8. Hatakeda, Y., Kamada, M., Goto, N., Fukaki, H., Tasaka, M., Suge, H., Takahashi, H.: Gravitropic response plays an important role in the nutational movements of the shoots of Pharbitis nil and Arabidopsis thaliana.-Physiol. Plant. 118: 464–473, 2003.CrossRefGoogle Scholar
  9. Heathcote, D.G.: Generation of nutational movements.-Nature 208: 909–910, 1965.Google Scholar
  10. Iino, M., Carr, D.J.: Safelight for photomorphogenetic studies: infrared radiation and infrared-scope.-Plant Sci. Lett. 23: 263–268, 1981.Google Scholar
  11. Iino, M.: Mediation of tropisms by lateral translocation of endogenous indole-3-acetic acid in maize coleoptiles.-Plant Cell Environ. 14: 279–286, 1991.Google Scholar
  12. Johnsson, A.: Growth movements not directed primarily by external stimuli. Circumnutation.-In: Haupt, W., Feinleib, M.E. (ed.): Encyclopedia of Plant Physiology. Vol. 7. Pp. 627–646. Springer-Verlag, Berlin 1979.Google Scholar
  13. Johnsson, A.: Circumnutations: results from recent experiments on Earth and in space.-Planta 203(Suppl.): S147–S158, 1997.PubMedGoogle Scholar
  14. Johnsson, A., Jensen, C., Engelmann, W., Schuster, J.: Circumnutations without gravity: a two-oscillator model.-J. Grav. Physiol. 6: 9–12, 1999.Google Scholar
  15. Liu, Z.H., Liu, H.Y., Wang, H.Y.: Effect of light on endogenous indole-3-acetic acid, peroxidase and indole-3-acetic acid oxidase in soybean hypocotyls.-Bot. Bull. Acad. sin. 37: 113–119, 1996.Google Scholar
  16. Orbovic, V., Poff, K.L.: Kinetics for phototropic curvature by etiolated seedlings of Arabidopsis thaliana.-Plant Physiol. 97: 1470–1475, 1991.PubMedCrossRefGoogle Scholar
  17. Schuster, J., Engelmann, W.: Circumnutations of Arabidopsis thaliana seedlings.-Biol. Rhythm Res. 28: 422–440, 1997.Google Scholar
  18. Shabala, S.N., Newman, I.A.: Proton and calcium flux oscillations in the elongation region correlate with root nutation.-Physiol. Plant. 100: 917–926, 1997.PubMedCrossRefGoogle Scholar
  19. Spurny, M.: Elongation and circumnutation oscillations of hypocotyl of pine seedlings (Pinus silvestris L.).-Biol. Plant. 17: 43–49, 1975.CrossRefGoogle Scholar
  20. Stolarz, M., Dziubinska, H., Krupa, M., Buda, A., Trebacz, K., Zawadzki, T.: Disturbances of stem circumnutations evoked by wound-induced variation potentials in Helianthus annuus L.-Cell. mol. Biol. Lett. 8: 31–40, 2003.PubMedGoogle Scholar
  21. Tepper, H.B., Yang, R.L.: Influence of the shoot tip and leaves on circumnutation in green pea seedlings.-Bot. Acta 109: 502–505, 1996.PubMedGoogle Scholar
  22. Yokotani-Tomita, K., Kato, J., Yamada, K., Kosemura, S., Yamamura. S,, Bruinsma. J., Hasegawa, K.: 8-Epixanthatin, a light-induced growth inhibitor, mediates the phototropic curvature in sunflower (Helianthus annuus) hypocotyls.-Physiol. Plant. 106: 326–330, 1999.CrossRefGoogle Scholar
  23. Zachariassen, E., Johnsson, A.: Effects of lithium ions on the circumnutations of Helianthus hypocotyls.-Physiol. Plant. 72: 147–152, 1988.Google Scholar
  24. Zachariassen, E., Johnsson, A., Brown, A.H., Chapman, D.K., Johnson-Glebe, C.: Influence of the g-force on the circumnutations of sunflower hypocotyls.-Physiol. Plant. 70: 447–452, 1987.PubMedGoogle Scholar

Copyright information

© Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Praha 2006

Authors and Affiliations

  • N. Someya
    • 1
  • K. Niinuma
    • 1
  • M. Kimura
    • 1
  • I. Yamaguchi
    • 1
  • H. Hamamoto
    • 1
  1. 1.RIKEN (The Institute of Physical and Chemical Research) Plant Science CenterSuehiro, Tsurumi-ku, Yokohama, KanagawaJapan

Personalised recommendations