Advertisement

Biologia Plantarum

, Volume 49, Issue 2, pp 195–200 | Cite as

The relationship between vernalization requirement and frost tolerance in substitution lines of wheat

  • I. T. Prášil
  • P. Prášilová
  • K. Pánková
Article

Abstract

Two sets of wheat (Triticum aestivum L.) substitution lines for the homoeologous group 5 chromosomes, 5A, 5B and 5D, carrying vernalization genes (Vrn-A1, Vrn-B1, Vrn-D1) were used to study the relationship between vernalization requirement and winter survival, with respect to the induction and maintenance of frost tolerance. Substitution lines carrying dominant Vrn loci substituted from the spring cultivars Zlatka (5A), Chinese Spring (5D) and the alternative cultivar Česká Přesívka (5B) into three different winter wheat backgrounds, Vala, Košútka and Zdar, showed lower winter survival by 20, 36, and 41 % for substitutions of 5B, 5A and 5D, respectively, compared to the original winter cultivars. Reciprocal substitution lines between two winter cultivars Mironovskaya 808 and Bezostaya 1 carrying different recessive alleles, vrn-A1, vrn-B1, vrn-D1, did not exhibit a modified induction of frost tolerance, but the duration of good frost tolerance, as well as the ability to survive the whole winter, was changed. In accordance with the model suggesting that genes for vernalization act as a master switch regulating the duration of frost tolerance, substitutions of homoeologous group 5 chromosomes induced, at first, frost tolerance at a level equal to the parental cultivar, and then, relative to the different extent of saturation of vernalization requirement, they gradually lost both frost tolerance and their ability to re-induce significant frost tolerance with a drop in temperature following warm periods in the winter.

Additional key words

growth habit heading winter survival freezing group 5 chromosomes Triticum aestivum L. 

Abbreviations

Fr

frost resistance genes

FT

frost tolerance

LT50

lethal temperature

Vrn

vernalization genes

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braun, H.-J.: Winter hardiness of bread wheats derived from spring × winter crosses.-Acta agron. hung. 45: 317–327, 1997.Google Scholar
  2. Cahalan, C., Law, C.N.: The genetical control of cold resistance and vernalisation requirement in wheat.-Heredity 42: 125–132, 1979.Google Scholar
  3. Cattivelli, L., Baldi, P., Crosatti, C., Di Fonzo, N., Faccioli, P., Grossi, M., Mastrangelo, A.M., Pecchioni, N., Stanca, A.M.: Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae.-Plant mol. Biol. 48: 649–665, 2002.Google Scholar
  4. Danyluk, J., Kane, N.A., Breton, G., Limin, A.E., Fowler, D.B., Sarhan, F.: TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals.-Plant Physiol. 132: 1849–1860, 2003.PubMedGoogle Scholar
  5. Faltusová-Kadlecová, Z., Faltus, M., Prášil, I.: Comparison of barely response to short-term cold or dehydration.-Biol. Plant. 45: 637–639, 2002.Google Scholar
  6. Fowler, D.B., Chauvin, L.P., Limin, A.E., Sarhan, F.: The regulatory role of vernalization in the expression of low-temperature-induced genes in wheat and rye.-Theor. appl. Genet. 93: 554–559, 1996.Google Scholar
  7. Fowler, D.B., Limin, A.E., Ritchie, J.T.: Low-temperature tolerance in cereals: Model and genetic interpretation.-Crop Sci. 39: 626–633, 1999.CrossRefGoogle Scholar
  8. Galiba, G., Quarrie, S.A., Sutka, J., Morgounov, A., Snape, J.W.: RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat.-Theor. appl. Genet. 90: 1174–1179, 1995.Google Scholar
  9. Gusta, L.V., Fowler, D.B.: Cold resistance and injury in winter cereals.-In: Mussel, H., Staples, R.C. (ed.): Stress Physiology in Crop Plants. Pp. 160–178. John Wiley and Sons, New York 1979.Google Scholar
  10. Gusta, L.V., Willen, R., Fu, A., Robertson, A.J., Wu, G.H.: Genetic and environmental control of winter survival of winter cereals.-Acta agron. hung. 45: 231–240, 1997.Google Scholar
  11. Janáček, J., Prášil, I.: Quantification of plant frost injury by nonlinear fitting of an s-shaped function.-Cryo-Letters 12: 47–52, 1991.Google Scholar
  12. Košner, J., Pánková, K.: The detection of allelic variants at the recessive vrn loci of winter wheat.-Euphytica 101: 9–16, 1998.Google Scholar
  13. Košner, J., Pánková, K.: Impact of homoeologous group 5 chromosomes with different vrn loci on leaf size and tillering.-Czech J. Genet. Plant Breed. 35: 65–72, 1999.Google Scholar
  14. Košner, J., Pánková, K.: The effect of the homoeologous group 5 chromosomes with different vrn loci on growth phases and quantitative characters of wheat.-Euphytica 119: 289–299, 2001a.Google Scholar
  15. Košner, J., Pánková, K.: Substitution lines of wheat with dominant genes Vrn.-Czech J. Genet. Plant Breed. 37: 41–49, 2001b.Google Scholar
  16. Limin, A.E., Fowler, D.B.: Developmental traits affecting low-temperature tolerance response in near-isogenic lines for the vernalization locus Vrn-A1 in wheat (Triticum aestivum L. em Thell).-Ann. Bot. 89: 579–585, 2002.PubMedGoogle Scholar
  17. Mahfoozi, S., Limin, A.E., Fowler, D.B.: Influence of vernalization and photoperiod responses on cold hardiness in winter cereals.-Crop Sci. 41: 1006–1011, 2001a.CrossRefGoogle Scholar
  18. Mahfoozi, S., Limin, A.E., Fowler, D.B.: Developmental regulation of low-temperature tolerance in winter wheat.-Ann. Bot. 87: 751–757, 2001b.Google Scholar
  19. Petr, J., Hnilička, F.: Changes in requirements on vernalization of winter wheat varieties in the Czech Republic in 1950–2000.-Rost. Výroba 48: 148–153, 2002.Google Scholar
  20. Prášil, I., Prášilová, P., Pánková, K. Relationships among vernalization, shoot apex development and frost tolerance in wheat.-Ann. Bot. 94: 413–418, 2004.PubMedGoogle Scholar
  21. Prášil, I., Prášilová, P., Papazisis, K., Valter, J.: Evaluation of freezing injury and dynamics of freezing resistance in cereals.-In: Dörffling, K., Brettchneider, B., Tantau, H., Pithan, K. (ed.): Crop Adaptation to Cool Climates. Pp. 37–48. ECSP-EEC-EAEC, Brussels 1994.Google Scholar
  22. Prášil, I., Rogalewicz, V.: Accuracy of wheat winterhardiness evaluation by a provocation method in natural conditions.-Genet. Šlecht. 25, 223–230, 1989.Google Scholar
  23. Roberts, D.W.A.: Duration of hardening and cold hardiness in winter wheat.-Can. J. Bot. 57: 1511–1517, 1979.Google Scholar
  24. Roberts, D.W.A.: Identification of loci on chromosome 5A of wheat involved in control of cold hardiness, vernalization, leaf length, rosette growth habit, and height of hardened plants.-Genome 33: 247–259. 1990.Google Scholar
  25. Roberts, D.W.A., MacDonald, M.D.: Evidence for the multiplicity of alleles at Vrn1, the winter-spring habit locus in common wheat.-Can. J. Genet. Cytol. 26: 191–193, 1984.Google Scholar
  26. Roberts, D.W.A., MacDonald, M.D.: Role of chromosome 5A in wheat in control of some traits associated with cold hardiness of winter wheat.-Can. J. Bot. 66: 658–662, 1988.CrossRefGoogle Scholar
  27. Schmütz, W.: Neuere Ergebnisse zur Beziehung zwischen Vernalisation und Winterfestigkeit bei Getreide.-In: Bericht über die Arbeitstagung der Arbeitsgemeinschaft der Saatzuchtleiter. Pp. 77–86. Gumpenstein 1977.Google Scholar
  28. Snape, J.W., Sarma, R., Quarrie, S.A., Fish, L., Galiba, G., Sutka, J.: Mapping genes for flowering time and frost tolerance in cereals using precise genetic stocks.-Euphytica 120: 309–315, 2001.Google Scholar
  29. Sutka, J.: Genes for frost resistance in wheat.-Euphytica 119: 167–172, 2001.Google Scholar
  30. Sutka, J., Kovács, G.: Reciprocal monosomic analysis of frost resistance on chromosome 5A in wheat.-Euphytica 34: 367–370, 1985.Google Scholar
  31. Sutka, J., Kovács, G., Veisz, O.: Substitution analysis of the frost resistance and winter hardiness of wheat under natural and artificial conditions.-Cereal Res. Commun. 14: 49–53, 1986.Google Scholar
  32. Táth, B., Galiba, G., Fehér, E., Sutka, J., Snape, J.W.: Mapping genes affecting flowering time and frost on chromosome 5B of wheat.-Theor. appl. Genet. 107: 509–514, 2003.Google Scholar
  33. Vágújfalvi, A., Crosatti, C., Galiba, G., Dubcovsky, J., Cattivelli, L.: Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of cor14b gene on frost-tolerant and frost-sensitive genotypes.-Mol. gen. Genet. 263: 194–200, 2000.PubMedGoogle Scholar
  34. Vágújfalvi, A., Galiba, G., Cattivelli, L. Dubcovsky, J.: The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance locus Fr-A2 on wheat chromosome 5A.-Mol. gen. Genet. 269: 60–67, 2003.Google Scholar
  35. Veisz, O., Sutka, J.: The relationships of hardening period and the expression of frost resistance in chromosome substitution lines of wheat.-Euphytica 43: 41–45, 1989.Google Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  • I. T. Prášil
    • 1
  • P. Prášilová
    • 1
  • K. Pánková
    • 1
  1. 1.Research Institute of Crop ProductionDepartment of Genetics and Plant BreedingPrahaCzech Republic

Personalised recommendations