Biologia Plantarum

, Volume 49, Issue 1, pp 133–136 | Cite as

Effects of competition and N and P supply on carbon isotope discrimination and 15N-natural abundance in four grassland species

  • J. T. Tsialtas
  • M. T. Kassioumi
  • D. S. Veresoglou


The effect of interspecific competition and element additions (N and P) on four grassland species (Poa pratensis, Lolium perenne, Festuca valida, Taraxacum officinale) grown under field conditions was studied. Two grasses (L. perenne, F. valida) grown in monoculture (absence of competition) showed lower carbon isotope discrimination (Δ13C) and enriched δ15N values. Nitrogen addition (as urea) had inconsistent effects on species Δ13C while caused enrichment of δ15N of P. pratensis and F. valida but strong depletion of δ15N of T. officinale. Phosphorous had no significant effect on Δ13C but depleted δ 15N of all species.

Additional key words

fertilization Festuca valida grasses Lolium perenne Poa pratensis Taraxacum officinale water use efficiency 



analysis of variance


carbon isotope discrimination


ribulose-1,5-bisphosphate carboxylase/oxygenase


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austin, A.T., Sala, O.E.: Foliar δ15N is negatively correlated with rainfall along IGBP transect in Australia.-Aust. J. Plant Physiol. 26: 293–295, 1999.CrossRefGoogle Scholar
  2. Biggs, I.M., Stewart, G.R., Wilson, J.R., Critchley, C.: 15N natural abundance studies in Australian commercial sugarcane.-Plant Soil 238: 21–30, 2002.CrossRefGoogle Scholar
  3. Brück, H., Payne, W.A., Sattelmacher, B.: Effects of phosphorus and water supply on yield, transpirational water-use efficiency, and carbon isotope discrimination on pearl millet.-Crop Sci. 40: 120–125, 2000.Google Scholar
  4. Chang, S.X., Handley, L.L.: Site history affects soil and plant 15N natural abundances (δ15N) in forests of northern Vancouver Island, British Columbia.-Funct. Ecol. 14: 273–280, 2000.CrossRefGoogle Scholar
  5. Condon, A.G., Richards, R.A., Farquhar, G.D.: The effect of variation in soil water availability, vapour pressure deficit and nitrogen nutrition on carbon isotope discrimination in wheat.-Aust. J. agr. Res. 43: 935–947, 1992.CrossRefGoogle Scholar
  6. Ebdon, J.S., Petrovic, A.M., White, R.A.: Interaction of nitrogen, phosphorous, and potassium on evapotranspiration rate and growth of Kentucky bluegrass.-Crop Sci. 39: 209–218, 1999.CrossRefGoogle Scholar
  7. Evans, R.D.: Physiological mechanisms influencing plant nitrogen isotope composition.-Trends Plant Sci. 6: 121–126, 2001.CrossRefPubMedGoogle Scholar
  8. Farquhar, G.D., Ehleringer, J.R., Hubick, K.T.: Carbon isotope discrimination and photosynthesis.-Annu. Rev. Plant Physiol. mol. Biol. 40: 503–537, 1989.CrossRefGoogle Scholar
  9. Field, C., Mooney, H.A.: The photosynthesis-nitrogen relationship in wild plants.-In: Givnish, T.J. (ed.): On the Economy of Plant Form and Function. Pp. 25–55. Cambridge University Press, Cambridge 1986.Google Scholar
  10. Gordon, C., Woodin, S.J., Mullins, C.E., Alexander, I.J.: Effects of environmental change, including drought, on water use by competing Calluna vulgaris (heather) and Pteridium aquilinum (bracken).-Funct. Ecol. 13(Suppl. 1): 96–106, 1999.CrossRefGoogle Scholar
  11. Handley, L.L., Odee, D., Scrimgeour, C.M.: δ15N and δ13C patterns in savanna vegetation: dependence on water availability and disturbance.-Funct. Ecol. 8: 306–314, 1994.Google Scholar
  12. Handley, L.L., Scrimgeour, C.M., Raven, J.A.: 15N natural abundance levels in terrestrial vascular plants: a précis.-In: Griffiths, H. (ed.): Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes. Pp. 89–98. BIOS Scientific Publishers, Oxford 1998.Google Scholar
  13. Hobbie, E.A., Macko, S.A., Williams, M.: Correlations between foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions.-Oecologia 122: 273–283, 2000.CrossRefGoogle Scholar
  14. Högberg, P.: Forests losing large quantities of nitrogen have elevated 15N:14N ratios.-Oecologia 84: 229–231, 1990.Google Scholar
  15. Högberg, P.: 15N natural abundance in soil-plant systems.-New Phytol. 137: 179–203, 1997.CrossRefGoogle Scholar
  16. Högberg, P., Johanisson, C.: 15N abundance of forests is correlated with losses of nitrogen.-Plant Soil 157: 147–150, 1993.Google Scholar
  17. Högberg, P., Johanisson, C., Högberg, M., Högbom, L., Näsholm, T., Hällgren, J.-E.: Measurements of abundances of 15N and 13C as tool in retrospective studies of N balances and water stress in forests: a discussion of preliminary results.-Plant Soil 168/9: 125–133, 1995.Google Scholar
  18. Högberg, P., Tamm, C.-O., Högberg, M.: Variations in 15N abundance in a forest fertilization trial: critical loads of N, N saturation, contamination and effects of revitalization fertilization.-Plant Soil 142: 211–219, 1992.Google Scholar
  19. Peñuelas, J., Filella, I., Lloret, F., Piñol, J., Siscart, D.: Effects of a severe drought on water and nitrogen use by Quercus ilex and Phillyrea latifolia.-Biol. Plant. 43: 47–53, 2000.CrossRefGoogle Scholar
  20. Peñuelas, J., Filella, I., Terradas, J.: Variability of plant nitrogen and water use in a 100-m transect of a subdesertic depression of the Ebro valley (Spain) characterized by leaf δ13C and δ15N.-Acta oecol. 20: 119–123, 1999.CrossRefGoogle Scholar
  21. Picon-Cochard, C., Nsourou-Obame, A., Collet, C., Guehl, J.-M., Fehri, A.: Competition for water between walnut seedlings (Junglans regia) and rye grass (Lolium perenne) assessed by carbon isotope discrimination and δ 18O enrichment.-Tree Physiol. 21: 183–191, 2001.PubMedGoogle Scholar
  22. Raeini-Sarjaz, M., Barthakur, N.N., Arnold, N.P., Jones, P.J.H.: Water stress, water use efficiency, carbon isotope discrimination and leaf gas exchange relationships of the bush bean.-J. Agron. Crop Sci. 180: 173–179, 1998.Google Scholar
  23. Robinson, D.: δ15N as an integrator of the nitrogen cycle.-Trends Ecol. Evol. 16: 153–162, 2001.CrossRefPubMedGoogle Scholar
  24. Roggy, J.C., Prévost, M.F., Gourbiere, F., Casabianca, H., Garbaye, J., Domenach, A.M.: Leaf natural 15N abundance and total N concentration as potential indicators of plant N nutrition in legumes and pioneer species in a rain forest of French Guiana.-Oecologia 120: 171–182, 1999.CrossRefGoogle Scholar
  25. Shangguan, Z.P., Shao, M.A., Dyckmans, J.: Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat.-Environ. exp. Bot. 44: 141–149, 2000.CrossRefPubMedGoogle Scholar
  26. Sparks, J.P., Ehleringer, J.R.: Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects.-Oecologia 109: 362–367, 1997.CrossRefGoogle Scholar
  27. Theodose, T.A., Bowman, W.D.: The influence of interspecific competition on the distribution of an alpine graminoid: evidence for the importance of plant competition in an extreme environment.-Oikos 79: 101–114, 1997.Google Scholar
  28. Tsialtas, J.T., Handley, L.L., Kassioumi, M.T., Veresoglou, D.S., Gagianas, A.A.: Interspecific variation in potential water use efficiency and its relation to plant species abundance in a water limited grassland.-Funct. Ecol. 15: 605–614, 2001.CrossRefGoogle Scholar
  29. Turner, N.C.: Further progress in crop water relations.-Adv. Agron. 58: 293–337, 1997.CrossRefGoogle Scholar
  30. Williams, K., Richards, J.H., Caldwell, M.M.: Effect of competition on stable carbon isotope ratios of two tussock grass species.-Oecologia 88: 148–151, 1991.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany 2005

Authors and Affiliations

  • J. T. Tsialtas
    • 1
  • M. T. Kassioumi
    • 1
  • D. S. Veresoglou
    • 1
  1. 1.School of Agriculture, Laboratory of Ecology and Environmental ProtectionAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations