Biologia Plantarum

, Volume 50, Issue 1, pp 15–20 | Cite as

Evaluation of heterologous promoters in transgenic Populus tremula × P. alba plants

  • C. Studart-Guimaraes
  • C. Lacorte
  • A. C. M. Brasileiro


The pattern and expression level of β-glucuronidase (gus) reporter gene regulated by six heterologous promoters were studied in transgenic Populus tremula × P. alba plants obtained by Agrobacterium-mediated transformation. Binary vector constructs used contained the following promoter sequences: the CaMV35S from cauliflower mosaic virus; its duplicated version fused to the enhancer sequence from alfalfa mosaic virus; CsVMV from cassava vein mosaic virus; ubiquitin 3 from Arabidopsis thaliana (UBQ3); S-adenosyl-L-methionine synthetase (Sam-s) from soybean; and the rolA from Agrobacterium rhizogenes. Histochemical staining of root, stem and leaf tissues showed phloem and xylem-specific gus expression under rolA promoter, and constitutive expression with the other putative constitutive promoters. Quantitative GUS expression of 10 – 15 independently transformed in vitro grown plants, containing each promoter, was determined by fluorimetric GUS assays. The UBQ3-gus fusion induced the highest average expression level, although an extensive variation in expression levels was observed between independent transgenic lines for all the constructs tested.

Additional key words

GUS poplar transformation transgene 



duplicated version of CaMV35S promoter fused to the enhancer sequence from alfalfa mosaic virus


35S promoter from cauliflower mosaic virus


promoter from cassava vein mosaic virus


ethylene diamine tetraacetic acid








promoter from rolA gene from Agrobacterium rhizogenes


promoter from S-adenosyl-L-methionine synthetase gene from Glycine max


promoter from ubiquitin 3 gene from Arabidopsis thaliana


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, H.J., Urwin, P.E., McPherson, M.J.: Engineering Plants for Nematode Resistance.-Annu. Rev. Phytopathol. 41: 1–25, 2003.CrossRefGoogle Scholar
  2. Bhattacharyya, S., Dey, N., Maiti, I.B.: Analysis of cis-sequence of subgenomic transcript promoter from the Figwort mosaic virus and comparison of promoter activity with the cauliflower mosaic virus promoters in monocot and dicot cells.-Virus Res. 90: 47–62, 2002.CrossRefPubMedGoogle Scholar
  3. Brasileiro, A.C.M., Tourneur, C., Leple, J.C., Combes, V., Jouanin, L.: Expression of the mutant Arabidopsis thaliana acetolactate synthase gene confers chlorsulfuron resistance to transgenic poplar plants.-Transgenic Res. 1: 133–141, 1992.Google Scholar
  4. Chunlin, S., Zhen, Z., Guifang, X., Altosaar, I., Pingzhang, F.: Construction of plant vectors with high level expression of B.t. toxin gene and studies on their expression behavior in transgenic tobaccos.-Chin. J. Biotechnol. 15: 203–210, 1999.PubMedGoogle Scholar
  5. Confalonieri, M., Balestrazzi, A., Bisoffi, S., Cella, R.: Factors affecting Agrobacterium tumefaciens-mediated transformation in several black poplar clones.-Plant Cell Tissue Organ Cult. 43: 215–222, 1995.Google Scholar
  6. Curtis, I.S., Power, J.B., Hedden, P., Phillips, A., Lowe, K.C., Ward, D.A., Davey, M.R.: Transformation and characterization of transgenic plants of Solanum dulcamara L.-incidence of transgene silencing.-Ann. Bot. 86: 63–71, 2000.CrossRefGoogle Scholar
  7. Datla, R.S.S., Bekkaoui, F., Hammerlindl, J.K., Pilate, G., Dunstan, D.I., Crosby, W.L.: Improved high-level constitutive foreign gene expression in plants using an AMV RNA4 untranslated leader sequence.-Plant Sci. 94: 139–149, 1993.CrossRefGoogle Scholar
  8. Falco, S.C., Zhongsen, L.: S-adenosyl-L-methionine synthetase promoter and its use in expression of transgenic genes in plants.-Patent Number WO 0037662, 2000.Google Scholar
  9. Feuillet, C., Lauvergeat, V., Deswarte, C., Pilate, G., Boudet, A., Grima-Pettenati, J.: Tissue-and cell-specific expression of a cinnamyl alcohol dehydrogenase promoter in transgenic poplar plants.-Plant mol. Biol. 27: 651–667, 1995.CrossRefPubMedGoogle Scholar
  10. Fillatti, J.A., Haissig, B., McCown, B., Comai, L., Reimenschneider, D.: Development of glyphosate-tolerant Populus plants through expression of a mutant aroA gene from Salmonella typhimurium.-In: Hanover, J.W., Keathley, D.E. (ed.): Genetic Manipulation of Woody Plants. Pp. 243–249. Plenum Press, New York-London 1988.Google Scholar
  11. Gittins, J.R., Pellny, T.K., Biricolti, S., Hiles E.R., Passey, A.J., James D.J.: Transgene expression in the vegetative tissues of apple driven by the vascular-specific rolC and CoYMV promoters.-Transgenic Res. 12: 391–402, 2003.CrossRefPubMedGoogle Scholar
  12. Grima-Pettenati, J., Goffner, D.: Lignin genetic engineering revisited.-Plant Sci. 145: 51–65, 1999.CrossRefGoogle Scholar
  13. Guivarc'h, A., Carneiro, M., Vilaine, F., Pautot, V., Chriqui, D.: Tissue-specific expression of the rolA gene mediates morphological changes in transgenic tobacco.-Plant mol. Biol. 30: 125–134, 1996.CrossRefPubMedGoogle Scholar
  14. Han, K.H., Meilan, R., Ma, C., Strauss, S.H.: An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus).-Plant Cell Rep. 19: 315–320, 2000.CrossRefGoogle Scholar
  15. Holsters, M., de Waele, D., Depicker, A., Messens, E., van Montagu, M., Schell, J.: Transfection and transformation of Agrobacterium tumefaciens.-Mol. gen. Genet. 163: 181–187, 1978.PubMedGoogle Scholar
  16. Holtorf, S., Apel, K., Bohlmann, H.: Comparison of different constitutive and inducible promoters for the overexpression of transgenes in Arabidopsis thaliana.-Plant mol. Biol. 29: 637–646, 1995.CrossRefPubMedGoogle Scholar
  17. Jefferson, R.A., Kavanagh, T.A., Bevan, M.W.: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants.-EMBO J. 6: 3901–3907, 1987.PubMedGoogle Scholar
  18. Kamo, K., Blowers, A., McElroy, D.: Effect of the cauliflower mosaic virus 35S, actin, and ubiquitin promoters on uidA expression from a bar-uidA fusion gene in transgenic Gladiolus plants.-In Vitro cell. dev. Biol. Plant 36: 13–20, 2000.Google Scholar
  19. Kooter, J.M., Matzke, M.A., Meyer, P.: Listening to the silent genes: transgene silencing, gene regulation and pathogen control.-Trends Plant Sci. 4: 340–347, 1999.CrossRefPubMedGoogle Scholar
  20. Kumar, S., Fladung M.: Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen.-Planta 213: 731–740, 2001.CrossRefPubMedGoogle Scholar
  21. Lacorte, C., Barros, D.: Expression of gus and gfp genes in garlic (Allium sativum L.) cells following particle bombardment transformation.-J. Plant Biotechnol. 2: 135–142, 2000.Google Scholar
  22. Leple, J.C., Brasileiro, A.C.M., Michel, M.F., Delmotte, F., Jouanin, L.: Transgenic poplars: expression of chimeric genes using four different constructs.-Plant Cell Rep. 11: 137–141, 1992.CrossRefGoogle Scholar
  23. Lindroth, A.M., Gronroos, R., Clapham, D., Svensson, J., Von Arnold, S.: Ubiquitous and tissue-specific gus expression in transgenic roots conferred by six different promoters in one coniferous and three angiosperm species.-Plant Cell Rep. 18: 820–828, 1999.CrossRefGoogle Scholar
  24. McCabe, E.E., Swain, W.F., Martinelli, B.J., Christou, P.: Stable transformation of soybean (Glycine max) by particle bombardment.-Bio/Technology 6: 923–926, 1988.CrossRefGoogle Scholar
  25. Mijnsbrugge, K.V., Van Montagu, M., Inze, D., Boerjan, W.: Tissue-specific expression conferred by the S-adenosyl-L-methionine synthase promoter of Arabidopsis thaliana in transgenic poplar.-Plant Cell Physiol. 37: 1108–1115, 1996.Google Scholar
  26. Norris, S.R., Meyer, S.E., Callis, J.: The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression.-Plant mol. Biol. 21: 895–906, 1993.CrossRefPubMedGoogle Scholar
  27. Peleman, J., Boerjan, W., Engler, G., Seurinck, J., Botterman, J., Alliotte, T., Van Montagu, M., Inze, D.: Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana S-adenosylmethionine synthetase.-Plant Cell 1: 81–93, 1989a.CrossRefPubMedGoogle Scholar
  28. Peleman, J., Saito, K., Cottyn, B., Engler, G., Seirinck, J., Van Montagu, M., Inze, D.: Structure and expression of the S-adenosylmethionine synthetase gene family in Arabidopsis thaliana.-Gene 84: 359–369, 1989b.CrossRefPubMedGoogle Scholar
  29. Rishi, A.S., Nelson, N.D., Goyal, A.: Genetic modification for improvement of Populus.-Physiol. mol. Biol. Plants 7: 7–21, 2001.Google Scholar
  30. Rogers, S.O., Bendich, A.J.: Extraction of DNA from plant tissue.-In: Gelvin, S.B., Schilperoort, R.A. (ed.): Plant Molecular Biology Manual. Pp. 1–10. Kluwer Academic Publishers, Dordrecht 1988.Google Scholar
  31. Tanaka, A., Mita, S., Ohta, S., Kyozuka, J., Shimamoto, K., Nakakura, K.: Enhancement of foreing gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron.-Nucl. Acids Res. 18: 6767–6770, 1990.PubMedGoogle Scholar
  32. Verdaguer, B., De Kochko, A., Beachy, R.N., Fauquet, C.: Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosaic virus (CVMV) promoter.-Plant mol. Biol. 31: 1129–1139, 1996.CrossRefPubMedGoogle Scholar
  33. Yibrah, H.S., Gronroos, R., Lindroth, A., Franzen, H., Clapham, D., Von Arnold, S.: Agrobacterium rhizogenes-mediated induction of adventitious rooting from Pinus contorta hypocotyls and the effect of 5-azacytidine on transgene activity.-Transgenic Res. 5: 75–85, 1996.CrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Praha 2006

Authors and Affiliations

  • C. Studart-Guimaraes
    • 1
  • C. Lacorte
    • 1
  • A. C. M. Brasileiro
    • 1
  1. 1.Embrapa Recursos Geneticos e Biotecnologia, Laboratorio de Transferencia de GenesParque Estacao Biologica (PqEB)Brasilia-DFBrazil

Personalised recommendations