Biologia Plantarum

, Volume 49, Issue 3, pp 371–380 | Cite as

Expression of modified 7SL RNA gene in transgenic Solanum tuberosum plants



A modified plant 7SL RNA gene from Arabidopsis thaliana designated AHIIA63M was introduced into potato plants via Agrobacterium-mediated transformation. No transgenic plants could be obtained using pGPTV-based binary vectors where AHIIA63M gene driven by polIII promoter was located close to the polII promoter of the selection gene. Special binary vectors with matrix attachment region (MAR) elements had to be used for transformation to insulate polII and polIII promoters within T-DNA. The level of AHIIA63M RNA in transgenic plants was lower than the levels of transcripts of transgenes driven by RNA polymerase II. The level of AHIIA63M transcript in transgenic potato plants was tissue specific. The highest expression was detected in roots and gynoecium and the lowest in tubers. Moreover, non-specific promoter activity within the MAR element was revealed. This activity contributed to AHIIA63M transcription. This is the first report of expression of a modified 7SL RNA gene in transgenic plants and promoter activity within the MAR element.

Additional key words

RNA polymerase III polIII expression cassette MAR element 


A element

chicken lysozyme A element




matrix attachment region


neomycin phosphotransferase II


cauliflower mosaic virus 35S promoter


nopaline synthase promoter


RNA polymerase II


RNA polymerase III


signal recognition particle


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlquist, P.: NA-dependent RNA polymerases, viruses, and RNA silencing.-Science 296: 1270–1273, 2002.Google Scholar
  2. Allen, G.C., Hall, G., Jr., Michalowski, S., Newman, W., Spiker, S., Weissinger, A.K., Thompson, W.F.: High-level transgene expression in plant cells: Effect of a strong scaffold attachment region from tobacco.-Plant Cell 8: 899–913, 1996.CrossRefPubMedGoogle Scholar
  3. Ame, J.C., Schreiber, V., Fraulob, V., Dolle, P., De Murcia, G., Niedergang, C.P.: Bidirectional promoter connects the poly(ADP-ribose) polymerase 2 (PARP-2) gene to the gene for RNase P RNA-structure and expression of the mouse PARP-2 gene.-J. biol. Chem. 276: 11092–11099, 2001.CrossRefPubMedGoogle Scholar
  4. Arnold, J.G., Schmutzler, C., Thomann, U., Van Tol, H., Gross, H.J.: The human tRNAVal gene family: organization, nucleotide sequences and homologous transcription of three single-copy genes.-Gene 44: 287–297, 1986.CrossRefPubMedGoogle Scholar
  5. Becker, D., Kemper, E., Schell, J., Masterson, R.: New plant binary vectors with selectable markers located proximal to the left T-DNA border.-Plant mol. Biol. 20: 1195–1197, 1992.CrossRefPubMedGoogle Scholar
  6. Bode, J., Stengeert-Iber, M., Kay, V., Schlake, T., Dietz-Pfeilstetter, A.: Scaffold/matrix-attached regions: topological switches with multiple regulatory functions.-Crit. Rev. Eukar. Gene Expression 6: 115–138, 1996.Google Scholar
  7. Bolton, E.C., Boeke, J.D.: Transcriptional interactions between yeast tRNA genes, flanking genes and Ty elements: A genomic point of view.-Genome Res. 13: 254–263, 2003.CrossRefPubMedGoogle Scholar
  8. Bonifer, C., Vidal, M., Grosveld, F., Sippel A.E.: Tissue specific and position independent expression of the complete gene domain for chicken lysozyme in transgenic mice.-EMBO J. 9: 2843–2848, 1990.PubMedGoogle Scholar
  9. Bourque, J.E., Folk, W.R.: Suppression of gene-expression in plant cells utilizing antisense sequences transcribed by RNA polymerase-III.-Plant mol. Biol. 19: 641–647, 1992.CrossRefPubMedGoogle Scholar
  10. Brouwer, C., Bruce, W., Maddock, S., Avramova, Z., Bowen, B.: Suppression of transgene silencing by matrix attachment regions in maize: A dual role for the maize 5 ′ ADH1 matrix attachment region.-Plant Cell 14: 2251–2264, 2002.CrossRefPubMedGoogle Scholar
  11. Campos, N., Palau, J., Zwich, C.: Diversity of 7 SL RNA from the signal recognition particle of maize endosperm.-Nucl. Acids Res. 17: 1573–1588, 1989.PubMedGoogle Scholar
  12. Flores, R., Delgado, S., Gas, M.E., Carbonell, A., Molina, D., Gago, S., De la Pena, M.: Viroids: the minimal non-coding RNAs with autonomous replication.-FEBS Lett. 567: 42–48, 2004.CrossRefPubMedGoogle Scholar
  13. Fukuda, Y., Nishikawa, S.: Matrix attachment regions enhance transcription of a downstream transgene and the accessibility of its promoter region to micrococcal nuclease.-Plant mol. Biol. 51: 665–675, 2003.CrossRefPubMedGoogle Scholar
  14. Gross, H.J., Domdey, H., Lossow, C., Jank, P., Raba, M., Alberty, H., Sanger, H.L.: Nucleotide sequence and secondary structure of potato spindle tuber viroid.-Nature 273: 203–208, 1978.CrossRefPubMedGoogle Scholar
  15. Hall, G., Allen, G.C., Loer, D.S., Thompson, W.F., Spiker, S.: Nuclear scaffolds and scaffold-attachment regions in higher-plants.-Proc. nat. Acad. Sci. USA 88: 9320–9324, 1991.PubMedGoogle Scholar
  16. Heard, D.J., Filipowicz, W., Marques, J.P., Palme, K., Gualberto, J.M.: An upstream U-snRNA gene-like promoter is required for transcription of the Arabidopsis thaliana 7SL RNA gene.-Nucl. Acids Res. 23: 1970–1976, 1995.PubMedGoogle Scholar
  17. Hull, M.W., Erickson, J., Johnston, M., Engelke, D.R.: tRNA genes as transcriptional repressor elements.-Mol. cell. Biol. 14: 1266–1277, 1994.PubMedGoogle Scholar
  18. Kendall, A., Hull, M.W., Bertrand, E., Good, P.D., Singer, R.H., Engelke, D.R.: A CBF5 mutation that disrupts nucleolar localization of early tRNA biosynthesis in yeast also suppresses tRNA gene-mediated transcriptional silencing.-Proc. nat. Acad. Sci. USA 97: 13108–13113, 2000.CrossRefPubMedGoogle Scholar
  19. Laemmli, U.K., Kas, E., Poljak, L., Adachi, Y.: Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains.-Curr. Opinion Genet. Dev. 2: 275–285, 1992.CrossRefGoogle Scholar
  20. Liu, J.W., Tabe, L.M.: The influences of two plant nuclear matrix attachment regions (MARs) on gene expression in transgenic plants.-Plant Cell Physiol. 39: 115–123, 1998.PubMedGoogle Scholar
  21. Loss, P., Schmitz, M., Steger, G., Riesner, D.: Formation of a thermodynamically metastable structure containing hairpin-II is critical for infectivity of potato spindle tuber viroid RNA.-EMBO J. 10: 719–727, 1991.PubMedGoogle Scholar
  22. Lutcke, H.: Signal recognition particle (SRP), a ubiquitous initiator of protein translocation.-Eur. J. Biochem. 228: 531–550, 1995.CrossRefPubMedGoogle Scholar
  23. Matousek, J., Junker, V., Vrba, L., Schubert, J., Patzak, J., Steger, G.: Molecular characterization and genome organization of 7SL RNA genes from hop (Humulus lupulus L.).-Gene 239: 173–183, 1999.CrossRefPubMedGoogle Scholar
  24. Matousek, J., Schroder, A.R.W., Trnena, L., Reimers, M., Baumstark, T., Dedie, P., Vlasak, J., Becker, I., Kreuzaler, F., Fladung, M., Riesner, D.: Inhibition of viroid infection by antisense RNA expression in transgenic plants.-Biol. Chem. Hoppe-Seyler 375: 765–777, 1994.PubMedGoogle Scholar
  25. Matousek, J., Vrba, L., Kuchar, M., Pavingerova, D., Orctova, L., Ptacek, J., Schubert, J., Steger, G., Beier, H., Riesner, D.: New antisense RNA systems targeted against plant pathogens.-Korean J. Plant Tissue Cult. 27: 379–385, 2000.Google Scholar
  26. Meyer, P.: Variation of transgene expression in plants.-Euphytica 85: 359–366, 1995.CrossRefGoogle Scholar
  27. Mlynarova, L., Hricova, A., Loonen, A., Nap, J.-P.: The presence of a chromatin boundary appears to shield a transgene in tobacco from RNA silencing.-Plant Cell 15: 2203–2217, 2003.CrossRefPubMedGoogle Scholar
  28. Mlynarova, L., Jansen, R.C., Conner, A.J., Stiekema, W.J., Nap, J.-P.: The MAR-mediated reduction in position effect can be uncoupled from copy number-dependent expression in transgenic plants.-Plant Cell 7: 599–609, 1995.CrossRefPubMedGoogle Scholar
  29. Mlynarova, L., Keizer, L.C.P., Stiekema, W.J., Nap, J.-P.: Approaching the lower limits of transgene variability.-Plant Cell 8: 1589–1599, 1996.CrossRefPubMedGoogle Scholar
  30. Mlynarova, L., Libantova, J., Vrba, L., Nap, J.-P.: The promiscuity of heterospecific lox sites increases dramatically in the presence of palindromic DNA.-Gene 296: 129–137, 2002.CrossRefPubMedGoogle Scholar
  31. Mlynarova, L., Loonen, A., Heldens, J., Jansen, R.C., Keizer, P., Stiekema, W.J., Nap, J-P.: Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region.-Plant Cell 6: 417–426, 1994.CrossRefPubMedGoogle Scholar
  32. Murashige, T., Skoog, F.: A revised medium for rapid growth and bio assays with tobacco tissue cultures.-Physiol. Plant. 15: 473–497, 1962.Google Scholar
  33. Murfett, J., Bourque, J.E., McClure, B.A.: Antisense suppression of S-RNase expression in Nicotiana using RNA-polymerase-II-transcribed and RNA-polymerase-III-transcribed gene constructs.-Plant mol. Biol. 29: 201–212, 1995.CrossRefPubMedGoogle Scholar
  34. Namciu, S.J., Blochlinger, K.B., Fournier, R.E.K.: Human matrix attachment regions insulate transgene expression from chromosomal position effects in Drosophila melanogaster.-Mol. cell. Biol. 18: 2382–2391, 1998.PubMedGoogle Scholar
  35. Novak, P., Matousek, J., Briza, J.: Valerophenone synthase-like chalcone synthase homologues in Humulus lupulus.-Biol. Plant. 46: 375–381, 2003.CrossRefGoogle Scholar
  36. Paul, A.-L., Ferl, R.J.: Higher order chromatin structure in maize and arabidopsis.-Plant Cell 10: 1349–1359, 1998.CrossRefPubMedGoogle Scholar
  37. Perriman, R., Bruening, G., Dennis, E.S., Peacock, W.J.: Effective ribozyme delivery in plant cells.-Proc. nat. Acad. Sci. USA 92: 6175–6179, 1995.PubMedGoogle Scholar
  38. Petersen, K., Leah, R., Knudsen, S., Cameron-Mills, V.: Matrix attachment regions (MARs) enhance transformation frequencies and reduce variance of transgene expression in barley.-Plant mol. Biol. 49: 45–58, 2002.CrossRefPubMedGoogle Scholar
  39. Phi-Van, L., Straling, W.H.: The matrix attachment regions of the chicken lysozyme gene co-map with the boundaries of the chromatin domain.-EMBO J. 7: 655–664, 1988.PubMedGoogle Scholar
  40. Phi-Van, L., Stratling, W.H.: Dissection of the ability of the chicken lysozyme gene 5′ matrix attachment region to stimulate transgene expression and to dampen position effects.-Biochemistry 35: 10735–10742, 1996.CrossRefPubMedGoogle Scholar
  41. Poljak, L., Seum, C., Mattioni, T., Laemmli, U.K.: SARs stimulate but do not confer position independent gene expression.-Nucl. Acids Res. 22: 4386–4394, 1994.PubMedGoogle Scholar
  42. Poritz, M.A., Siegel, V., Hansen, W., Walter, P.: Small ribonucleoproteins in Schizosaccharomyces pombe and Yarrowia lipolytica homologous to signal recognition particle.-Proc. nat. Acad. Sci. USA 85: 4315–4319, 1988.PubMedGoogle Scholar
  43. Riedel, L., Putz, A., Hauser, M-T., Luckinger, R., Wassenegger, M., Sanger, H.L.: Characterization of the signal recognition particle (SRP) RNA population of tomato (Lycopersicon esculentum).-Plant mol. Biol. 27: 669–680, 1995.CrossRefPubMedGoogle Scholar
  44. Riedel, L., Volger, U., Luckinger, R., Putz, A., Sanger, H. L., Wassenegger, M.: Molecular analysis of the gene family of the signal recognition particle (SRP) RNA of tomato.-Plant mol. Biol. 31: 113–125, 1996.CrossRefPubMedGoogle Scholar
  45. Schindler, I.M., Muhlbach, H.P.: Involvement of nuclear DNA-dependent RNA-polymerases in potato spindle tuber viroid replication-A reevaluation.-Plant Sci. 84: 221–229, 1992.CrossRefGoogle Scholar
  46. Stief, A., Winter, D.M., Stratling, W.H., Sippel, A.E.: A nuclear DNA attachment element mediates elevated and position-independent gene activity.-Nature 341: 343–345, 1989.CrossRefPubMedGoogle Scholar
  47. Tomilin, N.V., Iguchi-Ariga, S.M.M., Ariga, H.: Transcription and replication silencer element is present within conserved region of human Alu repeats interacting with nuclear protein.-FEBS Lett. 263: 69–72, 1990.CrossRefPubMedGoogle Scholar
  48. Ulker, B., Allen, G.C., Thompson, W.F., Spiker, S., Weissinger, A.K.: A tobacco matrix attachment region reduces the loss of transgene expression in the progeny of transgenic tobacco plants.-Plant J. 18: 253–263, 1999.CrossRefGoogle Scholar
  49. Ullu, E., Weiner, A.M.: Human genes and pseudogenes for the 7SL RNA component of signal recognition particle.-EMBO J. 3: 3303–3310, 1984.PubMedGoogle Scholar
  50. Van Engelen, F.A., Molthoff, J.W., Conner, A.J., Nap, J-P., Pereira, A., Stiekema, W.J.: pBinPLUS: An improved plant transformation vector based on pBin19.-Transgenic Res. 4: 288–290, 1995.CrossRefPubMedGoogle Scholar
  51. Walter, P., Blobel, G.: Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic-reticulum.-Nature 299: 691–698, 1982.CrossRefPubMedGoogle Scholar
  52. Wassenegger, M., Heimes, S., Riedel, L., Sanger, H.L.: RNA-directed de novo methylation of genomic sequences in plants.-Cell 76: 567–576, 1994.CrossRefPubMedGoogle Scholar
  53. Yukawa, Y., Matousek, J., Grimm, M., Vrba, L., Steger, G., Sugiura, M., Beier, H.: Plant 7SL RNA and tRNATyr genes with inserted antisense sequences are efficiently expressed in an in vitro transcription system from Nicotiana tabacum cells.-Plant mol. Biol. 50: 713–723, 2002.CrossRefPubMedGoogle Scholar

Copyright information

© Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Praha 2005

Authors and Affiliations

  1. 1.Department of Molecular Genetics, Institute of Plant Molecular BiologyAcademy of Sciences of the Czech RepublicCeske BudejoviceCzech Republic

Personalised recommendations