Difference in the binding mechanism of distinct antimony forms in bovine serum albumin

Abstract

The toxicity of antimony (Sb) is closely related to its chemical forms. To further realize the toxicity risk of different forms of Sb, the separate and simultaneous binding mechanisms of antimony potassium tartrate/potassium pyroantimonate with bovine serum albumin (BSA) were investigated with muti-spectroscopic methods. Fluorescence quenching result and UV–vis absorption spectra showed that a 1:1 complex was formed between antimony potassium tartrate/potassium pyroantimonate and BSA through a modest binding force. The results revealed that the binding of antimony potassium tartrate/potassium pyroantimonate to BSA caused changes in the secondary structure of BSA. Both Sb forms (antimony potassium tartrate and potassium pyroantimonate) were able to interact with BSA when coexisting but there was a binding influence on their interacting with the BSA. Both Sb forms interfere with the binding of the other to protein.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abdelhameed AS, Alanazi AM, Bakheit AH, Darwish HW, Ghabbour HA, Darwish IA (2017) Fluorescence spectroscopic and molecular docking studies of the binding interaction between the new anaplastic lymphoma kinase inhibitor crizotinib and bovine serum albumin. Spectrochim Acta A Mol Biomol Spectrosc 171:174–182. https://doi.org/10.1016/j.saa.2016.08.005

    CAS  PubMed  Article  Google Scholar 

  2. Adams RL, Broughton KS (2016) Insulinotropic effects of whey: mechanisms of action, recent clinical trials, and clinical applications. Ann Nutr Metab 69:56–63. https://doi.org/10.1159/000448665

    CAS  PubMed  Article  Google Scholar 

  3. Agrawal R, Siddiqi MK, Thakur Y, Tripathi M, Asatkar AK, Khan RH, Pande R (2019) Explication of bovine serum albumin binding with naphthyl hydroxamic acids using a multispectroscopic and molecular docking approach along with its antioxidant activity. Luminescence 34:628–643. https://doi.org/10.1002/bio.3645

    CAS  PubMed  Article  Google Scholar 

  4. Alhazmi HA (2019) FT-IR spectroscopy for the identification of binding sites and measurements of the binding interactions of important metal ions with bovine serum albumin. Sci Pharm 87:1–13. https://doi.org/10.3390/scipharm87010005

    CAS  Article  Google Scholar 

  5. Barakat C, Patra D (2013) Combining time-resolved fluorescence with synchronous fluorescence spectroscopy to study bovine serum albumin-curcumin complex during unfolding and refolding processes. Luminescence 28:149–155. https://doi.org/10.1002/bio.2354

    CAS  PubMed  Article  Google Scholar 

  6. Bolaños K, Kogan MJ, Araya E (2019) Capping gold nanoparticles with albumin to improve their biomedical properties. Int J Nanomed 14:6387–6406. https://doi.org/10.2147/ijn.s210992

    CAS  Article  Google Scholar 

  7. Cao H, Yi Y (2017) Study on the interaction of chromate with bovine serum albumin by spectroscopic method. Biometals 30:529–539. https://doi.org/10.1007/s10534-017-0022-1

    CAS  PubMed  Article  Google Scholar 

  8. Chen Z, Zhang J, Liu C (2013) Study on the interaction between a water-soluble dinuclear nickel complex and bovine serum albumin by spectroscopic techniques. Biometals 26:827–838. https://doi.org/10.1007/s10534-013-9663-x

    CAS  PubMed  Article  Google Scholar 

  9. Chen M, Liu Y, Cao H, Song L, Zhang Q (2015) The secondary and aggregation structural changes of BSA induced by trivalent chromium: a biophysical study. J Lumin 158:116–124. https://doi.org/10.1016/j.jlumin.2014.09.021

    CAS  Article  Google Scholar 

  10. Chunmei D, Cunwei J, Huixiang L, Yuze S, Wei Y, Dan Z (2014) Study of the interaction between mercury (II) and bovine serum albumin by spectroscopic methods. Environ Toxicol Pharmacol 37:870–877. https://doi.org/10.1016/j.etap.2014.01.021

    CAS  PubMed  Article  Google Scholar 

  11. Das S, Bora N, Rohman MA, Sharma R, Jha AN, Roy AS (2018) Molecular recognition of bio-active flavonoids quercetin and rutin by bovine hemoglobin: an overview of the binding mechanism, thermodynamics and structural aspects through multi-spectroscopic and molecular dynamics simulation studies. Phys Chem Chem Phys 20:21668–21684. https://doi.org/10.1039/c8cp02760a

    CAS  PubMed  Article  Google Scholar 

  12. Das S, Pahari S, Sarmah S, Rohman MA, Paul D, Jana M, Roy AS (2019) Lysozyme–luteolin binding: molecular insights into the complexation process and the inhibitory effects of luteolin towards protein modification. Phys Chem Chem Phys 21:12649–12666. https://doi.org/10.1039/c9cp01128e

    CAS  PubMed  Article  Google Scholar 

  13. Deng L, Sun N, Kitova EN, Klassen JS (2010) Direct quantification of protein− metal ion affinities by electrospray ionization mass spectrometry. Anal Chem 82:2170–2174. https://doi.org/10.1021/ac902633d

    CAS  PubMed  Article  Google Scholar 

  14. Fan J, Sun W, Wang Z, Peng X, Li Y, Cao J (2014) A fluorescent probe for site I binding and sensitive discrimination of HSA from BSA. Chem Commun 50:9573–9576. https://doi.org/10.1039/c4cc03778b

    CAS  Article  Google Scholar 

  15. Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys 437:55–75. https://doi.org/10.1002/andp.19484370105

    Article  Google Scholar 

  16. Ghosh S, Paul BK, Chattopadhyay N (2014) Interaction of cyclodextrins with human and bovine serum albumins: A combined spectroscopic and computational investigation. Int J Chem Sci 126:931–944. https://doi.org/10.1007/s12039-014-0652-6

    CAS  Article  Google Scholar 

  17. Guo W, Fu Z, Wang H, Liu S, Wu F, Giesy JP (2018) Removal of antimonate (Sb(V)) and antimonite (Sb(III)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): Dependence on influencing factors and insights into removal mechanisms. Sci Total Environ 644:1277–1285. https://doi.org/10.1016/j.scitotenv.2018.07.034

    CAS  PubMed  Article  Google Scholar 

  18. Hoogenboezem EN, Duvall CL (2018) Harnessing albumin as a carrier for cancer therapies. Adv Drug Deliv Rev 130:73–89. https://doi.org/10.1016/j.addr.2018.07.011

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. Springer, New York

    Google Scholar 

  20. Li W, Fu F, Ding Z, Tang B (2018) Zero valent iron as an electron transfer agent in a reaction system based on zero valent iron/magnetite nanocomposites for adsorption and oxidation of Sb (III). J Taiwan Inst Chem Eng 85:155–164. https://doi.org/10.1016/j.jtice.2018.01.032

    CAS  Article  Google Scholar 

  21. Li XF, Ma LG, Yang YQ, Liu YJ, Meng XR, Yang HX (2020) Synthesis, crystal structure and bovine serum albumin–binding studies of a new Cd (II) complex incorporating 2, 2′-(propane-1, 3-diyl) bis (1H-imidazole-4, 5-dicarboxylate). Acc Chem Res 44:198–205. https://doi.org/10.1177/1747519819895240

    CAS  Article  Google Scholar 

  22. Litvinov RI, Faizullin DA, Zuev YF, Weisel JW (2012) The α-helix to β-sheet transition in stretched and compressed hydrated fibrin clots. Biophys J 103:1020–1027. https://doi.org/10.1016/j.bpj.2012.07.046

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Lloyd JBF (1971) Synchronized excitation of fluorescence emission spectra. Nat Phys Sci 231:64–65. https://doi.org/10.1038/physci231064a0

    CAS  Article  Google Scholar 

  24. Long X, Wang X, Guo X, He M (2020) A review of removal technology for antimony in aqueous solution. J Environ Sci 90:189–204. https://doi.org/10.1016/j.jes.2019.12.008

    Article  Google Scholar 

  25. Ma GJ, Ferhan AR, Jackman JA, Cho NJ (2020) Conformational flexibility of fatty acid-free bovine serum albumin proteins enables superior antifouling coatings. Comms Mat 1:1–11. https://doi.org/10.1038/s43246-020-0047-9

    Article  Google Scholar 

  26. Meti MD, Nandibewoor ST, Joshi SD, More UA, Chimatadar SA (2015) Multi-spectroscopic investigation of the binding interaction of fosfomycin with bovine serum albumin. J Pharm Anal 5:249–255. https://doi.org/10.1016/j.jpha.2015.01.004

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Moreno-Andrade I, Regidor-Alfageme E, Durazo A, Field JA, Umlauf K, Sierra-Alvarez R (2020) LC-ICP-OES method for antimony speciation analysis in liquid samples. J Environ Sci Health A 55:457–463. https://doi.org/10.1080/10934529.2019.1707565

    CAS  Article  Google Scholar 

  28. Nurdiansyah R, Rifa’i M (2016) A comparative analysis of serum albumin from different species to determine a natural source of albumin that might be useful for human therapy. J Taibah Univ Medical Sci 11:243–249. https://doi.org/10.1016/j.jtumed.2016.04.003

    Article  Google Scholar 

  29. Patel R, Kumari M, Dohare N, Khan AB, Singh P, Malik M, Kumar A (2016) Interaction between pyrrolidinium based ionic liquid and bovine serum albumin: a spectroscopic and molecular docking insight. Anal Biochem 5:1–8. https://doi.org/10.4172/2161-1009.1000265

    CAS  Article  Google Scholar 

  30. Paul BK, Bhattacharjee K, Bose S, Guchhait N (2012) A spectroscopic investigation on the interaction of a magnetic ferrofluid with a model plasma protein: effect on the conformation and activity of the protein. Phys Chem Chem Phys 14:15482–15493. https://doi.org/10.1039/c2cp42415k

    CAS  PubMed  Article  Google Scholar 

  31. Paul S, Ghanti R, Sardar PS, Majhi A (2019) Synthesis of a novel coumarin derivative and its binding interaction with serum albumins. Chem Heterocycl Compd (N Y) 55:607–611. https://doi.org/10.1007/s10593-019-02505-6

    CAS  Article  Google Scholar 

  32. Pawar SK, Jaldappagari S (2019) Interaction of repaglinide with bovine serum albumin: Spectroscopic and molecular docking approaches. J Pharm Anal 9:274–283. https://doi.org/10.1016/j.jpha.2019.03.007

    PubMed  PubMed Central  Article  Google Scholar 

  33. Petitpas I, Bhattacharya AA, Twine S, East M, Curry S (2001) Crystal structure analysis of warfarin binding to human serum albumin anatomy of drug site I. J Biol Chem 276:22804–22809. https://doi.org/10.1074/jbc.m100575200

    CAS  PubMed  Article  Google Scholar 

  34. Renard F, Putnis CV, Montes-Hernandez G, King HE, Breedveld GD, Okkenhaug G (2018) Sequestration of antimony on calcite observed by time-resolved nanoscale imaging. Environ Sci Technol 52(1):107–113. https://doi.org/10.1021/acs.est.7b04727

    CAS  PubMed  Article  Google Scholar 

  35. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102. https://doi.org/10.1021/bi00514a017

    CAS  PubMed  Article  Google Scholar 

  36. Roy AS, Samanta SK, Ghosh P, Tripathy DR, Ghosh SK, Dasgupta S (2016) Cell cytotoxicity and serum albumin binding capacity of the morin-Cu (II) complex and its effect on deoxyribonucleic acid. Mol Biosyst 12:2818–2833. https://doi.org/10.1039/c6mb00344c

    CAS  PubMed  Article  Google Scholar 

  37. Sahilli YC, Akgun MH, Yildiz D (2016) Antimony induced glutathione efflux from human erythroctes. Fresenius Environ Bull 25:4965–4971

    CAS  Google Scholar 

  38. Samarkina DA, Gabdrakhmanov DR, Lukashenko SS, Nizameev IR, Kadirov MK, Zakharova LY (2019) Homologous series of amphiphiles bearing imidazolium head group: complexation with bovine serum albumin. J Mol Liq 275:232–240. https://doi.org/10.1016/j.molliq.2018.11.082

    CAS  Article  Google Scholar 

  39. Shahid M, Khalid S, Dumat C, Pierart A, Niazi NK (2019) Biogeochemistry of antimony in soil-plant system: Ecotoxicology and human health. Appl Geochem 106:45–59. https://doi.org/10.1016/j.apgeochem.2019.04.006

    CAS  Article  Google Scholar 

  40. Sharma D, Ojha H, Pathak M, Singh B, Sharma N, Singh A, Kakkar R, Sharma RK (2016) Spectroscopic and molecular modelling studies of binding mechanism of metformin with bovine serum albumin. J Mo Struct 1118:267–274. https://doi.org/10.1016/j.molstruc.2016.04.030

    CAS  Article  Google Scholar 

  41. Shi J-H, Lou Y-Y, Zhou K-L, Pan DQ (2018) Spectroscopic and molecular docking approaches for the investigation of molecular interactions between herbicide sulfosulfuron and bovine serum albumin. J Biomol Struct Dyn 36:2822–2830. https://doi.org/10.1080/07391102.2017.1375991

    CAS  PubMed  Article  Google Scholar 

  42. Song W, Zhang D, Pan X, Lee DJ (2013) Complexation of HSA with different forms of antimony (Sb): an application of fluorescence spectroscopy. J Lumin 136:80–85. https://doi.org/10.1016/j.jlumin.2012.11.008

    CAS  Article  Google Scholar 

  43. Sundar S, Chakravarty J (2010) Antimony toxicity. Int J Environ Res Public Health 7:4267–4277. https://doi.org/10.3390/ijerph7124267

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Tamás MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 4:252–267. https://doi.org/10.3390/biom4010252

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Tantimongcolwat T, Prachayasittikul S, Prachayasittikul V (2019) Unravelling the interaction mechanism between clioquinol and bovine serum albumin by multi-spectroscopic and molecular docking approaches. Spectrochim Acta A Mol Biomol Spectrosc 216:25–34. https://doi.org/10.1016/j.saa.2019.03.004

    CAS  PubMed  Article  Google Scholar 

  46. Verdugo M, Ruiz Encinar J, Costa-Fernández JM, Menendez-Miranda M, Bouzas-Ramos D, Bravo M, Quiroz W (2017) Study of conformational changes and protein aggregation of bovine serum albumin in presence of Sb (III) and Sb (V). PLoS ONE 12:1–20. https://doi.org/10.1371/journal.pone.0170869

    CAS  Article  Google Scholar 

  47. Voit E, Udovenko A, Kovaleva E, Makarenko N, Beleneva I, Zemnukhova L (2019) Structure and properties of the molecular complex of antimony (III) fluoride with γ-glycine. J Struct Chem 60:630–639. https://doi.org/10.1134/S0022476619040140

    CAS  Article  Google Scholar 

  48. Wang X, He M, Xi J, Lu X (2011) Antimony distribution and mobility in rivers around the world’s largest antimony mine of Xikuangshan, Hunan Province, China. Microchem J 97:4–11. https://doi.org/10.1016/j.microc.2010.05.011

    CAS  Article  Google Scholar 

  49. Wang L, Li H, Yu D, Wang Y, Wang W, Wu M (2019) Hyperbranched polyamide-functionalized sodium alginate microsphere as a novel adsorbent for the removal of antimony (III) in wastewater. Environ Sci Pollut Res 26:27372–27384. https://doi.org/10.1007/s11356-019-05914-4

    CAS  Article  Google Scholar 

  50. Wani TA, AlRabiah H, Bakheit AH, Kalam MA, Zargar S (2017) Study of binding interaction of rivaroxaban with bovine serum albumin using multi-spectroscopic and molecular docking approach. Chem Cent J 11:1–9. https://doi.org/10.1186/s13065-017-0366-1

    CAS  Article  Google Scholar 

  51. Wilson SC, Lockwood PV, Ashley PM, Tighe M (2010) The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environ Pollut 158:1169–1181. https://doi.org/10.1016/j.envpol.2009.10.045

    CAS  PubMed  Article  Google Scholar 

  52. Wu B, Qu C, Wang Y, Zhao J, Du H (2019) Comparison of the quenching effects of two main components of ziziphi spinosae semen on serum albumin fluorescence. J Fluoresc 29:1113–1123. https://doi.org/10.1007/s10895-019-02422-z

    CAS  PubMed  Article  Google Scholar 

  53. Xu X, Zhang L, Shen D, Wu H, Liu Q (2008) Oxygen-dependent oxidation of Fe (II) to Fe (III) and interaction of Fe (III) with bovine serum albumin, leading to a hysteretic effect on the fluorescence of bovine serum albumin. J Fluoresc 18:193–201. https://doi.org/10.1007/s10895-007-0263-4

    CAS  PubMed  Article  Google Scholar 

  54. Yang Y, Feng Y, Wang Y, Wang L, Shi W (2013) Interactions between U (VI) and bovine serum albumin. J Radioanal Nucl Chem 298:903–908. https://doi.org/10.1007/s10967-013-2487-x

    CAS  Article  Google Scholar 

  55. Yang Y, Zhang N, Sun Y, Li J, Zhao R, Zheng Z, Ding Y, Zhang X, Geng D, Sun Y (2019) Multispectroscopic and molecular modeling studies on the interaction of bile acids with bovine serum albumin (BSA). J Mol Struct 1180:89–99. https://doi.org/10.1016/j.molstruc.2018.09.004

    CAS  Article  Google Scholar 

  56. Yu X, Liu R, Ji D, Yang F, Li X, Xie J, Zhou J, Yi P (2011) Study on the synergism effect of lomefloxacin and ofloxacin for bovine serum albumin in solution by spectroscopic techniques. J Solution Chem 40:521–531. https://doi.org/10.1007/s10953-011-9653-y

    CAS  Article  Google Scholar 

  57. Yue HL, Hu YJ, Huang HG, Jiang S, Tu B (2014) Development of morin-conjugated Au nanoparticles: Exploring the interaction efficiency with BSA using spectroscopic methods. Spectrochim Acta A Mol Biomol Spectrosc 130:402–410. https://doi.org/10.1016/j.saa.2014.04.022

    CAS  PubMed  Article  Google Scholar 

  58. Zhang Q, Ni Y (2017) Comparative studies on the interaction of nitrofuran antibiotics with bovine serum albumin. Rsc Adv 7:39833–39841. https://doi.org/10.1039/c7ra05570f

    CAS  Article  Google Scholar 

  59. Zhang J, Chen W, Tang B, Zhang W, Chen L, Duan Y, Zhu YX, Zhu Y, Zhang Y (2016) Interactions of 1-hydroxypyrene with bovine serum albumin: insights from multi-spectroscopy, docking and molecular dynamics simulation methods. Rsc Adv 6:23622–23633. https://doi.org/10.1039/c6ra00981f

    CAS  Article  Google Scholar 

  60. Zhang H, Zhang M, Wang Y, Wang Y, Sun S, Fei Z, Cao J (2018) Effects of selected two noble metal ions in medicine on the structure and activity of bovine serum albumin: a multi-spectral studies. J Lumin 194:519–529. https://doi.org/10.1016/j.jlumin.2017.10.081

    CAS  Article  Google Scholar 

  61. Zhao X, Liu R, Teng Y, Liu X (2011) The interaction between Ag+ and bovine serum albumin: a spectroscopic investigation. Sci Total Environ 409:892–897. https://doi.org/10.1016/j.scitotenv.2010.11.004

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiali Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Yang, G., Li, X. et al. Difference in the binding mechanism of distinct antimony forms in bovine serum albumin. Biometals (2021). https://doi.org/10.1007/s10534-021-00291-3

Download citation

Keywords

  • Antimony potassium tartrate
  • Potassium pyroantimonate
  • Bovine serum albumin