Gadolinium distribution in kidney tissue determined and quantified by micro synchrotron X-ray fluorescence

Abstract

Aims of this study were to investigate gadolinium (Gd) in kidney tissue from a female patient with severe renal failure, who had a magnetic resonance imaging (MRI) with Gd-based contrast agent (GBCA) three times prior to kidney transplantation. Secondly to assess (semi-)quantitatively the Gd concentration in renal tissue and the spatial distribution of Gd in association to suspected co-elements such as calcium (Ca) and zinc (Zn). Archival paraffin embedded kidney tissue was investigated by micro Synchrotron X-ray fluorescence (µSRXRF) at the DORIS III storage ring at beamline L, HASYLAB/DESY(Hamburg, Germany). Elementary gadolinium (Gd) could be demonstrated in a near histological resolution in areas of about 2 × 1.5 mm2 of size. Mean Gd resulted in 200 ppm with a huge width of distribution (Gd-max: 2000 ppm). In kidney cortex Gd was in-homogeneously, but not randomly, distributed. Gd was verified throughout the investigated tissue. Low Gd was predominately concentrated either in areas with focally atrophic tubules or in areas with totally preserved uriniferous tubes. Moreover, strong correlations existed between Gd and calcium (Ca) or Gd and zinc (Zn) or Gd and strontium (Sr) distribution. Throughout our analysed areas copper (Cu) was nearly homogeneously distributed and Cu association to Gd could not be established, and also not for Gd to Fe. Gd in glomeruli was relatively reduced compared with mean Gd-values, while iron (Fe) distribution clearly demarks glomeruli mostly due to red blood cell iron in these capillary convolutes. Quantitative µSRXRF analysis provided an insight in element spatial distribution of Gd in the renal cortex. The strong correlation of the spatial distribution and associations between elements like Ca, Zn and Sr let us suspect that these elements are involved in the cell metabolism of GBCA. Low Gd in areas with extreme fibrosis and tubule atrophy or in areas with histologically intact tubes, let us suspect that on the one side Gd cannot be transported and deposited into these tissue areas and on the other side we assume that intact renal tubes do not reabsorb and store excreted Gd.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

NSF:

Nephrogenic systemic fibrosis

µSRXRF:

Microscopic synchrotron radiation X-ray fluorescence

Gd:

Gadolinium

GBCA:

Gadolinium based contrast agents

References

  1. Abraham JL (2010) Detection of gadolinium (Gd) in tissues. Curr Rheumatol Rev 6(3):163–170. https://doi.org/10.2174/157339710791792784

    CAS  Article  Google Scholar 

  2. Abraham JL, Thakral C, Skov L, Rossen K, Marckmann P (2008) Dermal inorganic gadolinium concentrations: evidence for in vivo transmetallation and long-term persistence in nephrogenic systemic fibrosis. Br J Dermatol 158(2):273–280. https://doi.org/10.1111/j.1365-2133.2007.08335.x

    CAS  Article  PubMed  Google Scholar 

  3. Akgun H, Gonlusen G, Cartwright J Jr, Suki WN, Truong LD (2006) Are gadolinium-based contrast media nephrotoxic? A renal biopsy study. Arch Pathol Lab Med 130(9):1354–1357. https://doi.org/10.1043/1543-2165(2006)130[1354:AGCMNA]2.0.CO;2

    Article  PubMed  Google Scholar 

  4. Boyd AS, Zic JA, Abraham JL (2007) Gadolinium deposition in nephrogenic fibrosing dermopathy. J Am Acad Dermatol 56(1):27–30. https://doi.org/10.1016/j.jaad.2006.10.048

    Article  PubMed  Google Scholar 

  5. Bussi S, Coppo A, Botteron C et al (2018) Differences in gadolinium retention after repeated injections of macrocyclic MR contrast agents to rats. J Magn Reson Imaging 47(3):746–752. https://doi.org/10.1002/jmri.25822

    Article  PubMed  Google Scholar 

  6. El-Khatib AH, Radbruch H, Trog S et al (2019) Gadolinium in human brain sections and colocalization with other elements. Neurol Neuroimmunol Neuroinflamm 6(1):e515. https://doi.org/10.1212/NXI.0000000000000515

    Article  PubMed  Google Scholar 

  7. Falkenberg G, Osterode W (2010) Räumliche Abbildung der Verteilung von Spurenelementen auf mikroskopischem Niveau. Wo sitzt das Blei im Knochen? Mikoroskopischen Röntgenfluoreszenzanalyse. In: Falta J, Möller T (ed) Forschung mit Synchrotronstrahlung. Vieweg + Teubner, Wiesbaden

    Google Scholar 

  8. Fingerhut S, Niehoff AC, Sperling M, Jeibmann A, Paulus W, Niederstadt T, Allkemper T, Heindel W, Holling M, Karst U (2018) Spatially resolved quantification of gadolinium deposited in the brain of a patient treated with gadolinium-based contrast agents. J Trace Elem Med Biol 45:125–130. https://doi.org/10.1016/j.jtemb.2017.10.004

    CAS  Article  PubMed  Google Scholar 

  9. George SJ, Webb SM, Abraham JL, Cramer SP (2010) Synchrotron X-ray analyses demonstrate phosphate-bound gadolinium in skin in nephrogenic systemic fibrosis. Br J Dermatol 163(5):1077–1081. https://doi.org/10.1111/j.1365-2133.2010.09918.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Grobner T (2006) Gadolinium–a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108

    CAS  Article  Google Scholar 

  11. High WA, Ayers RA, Chandler J, Zito G, Cowper SE (2007a) Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 56(1):21–26. https://doi.org/10.1016/j.jaad.2006.10.047

    Article  PubMed  Google Scholar 

  12. High WA, Ayers RA, Cowper SE (2007b) Gadolinium is quantifiable within the tissue of patients with nephrogenic systemic fibrosis. J Am Acad Dermatol 56(4):710–712. https://doi.org/10.1016/j.jaad.2007.01.022

    Article  PubMed  Google Scholar 

  13. High WA, Ranville JF, Brown M, Punshon T, Lanzirotti A, Jackson BP (2010) Gadolinium deposition in nephrogenic systemic fibrosis: an examination of tissue using synchrotron x-ray fluorescence spectroscopy. J Am Acad Dermatol 62(1):38–44. https://doi.org/10.1016/j.jaad.2009.07.018

    CAS  Article  PubMed  Google Scholar 

  14. Idee JM, Fretellier N, Robic C, Corot C (2014) The role of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: a critical update. Crit Rev Toxicol 44(10):895–913. https://doi.org/10.3109/10408444.2014.955568

    CAS  Article  PubMed  Google Scholar 

  15. Kanal E, Tweedle MF (2015) Residual or retained gadolinium: practical implications for radiologists and our patients. Radiology 275(3):630–634. https://doi.org/10.1148/radiol.2015150805

    Article  PubMed  Google Scholar 

  16. Marckmann P, Skov L, Rossen K et al (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17(9):2359–2362. https://doi.org/10.1681/ASN.2006060601

    Article  PubMed  Google Scholar 

  17. Mlinar B, Enyeart JJ (1993) Block of current through T-type calcium channels by trivalent metal cations and nickel in neural rat and human cells. J Physiol 469:639–652. https://doi.org/10.1113/jphysiol.1993.sp019835

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Osterode W, Falkenberg G, Ferenci P, Wrba F (2019) Quantitative trace element mapping in liver tissue from patients with Wilson’s disease determined by micro X-ray fluorescence. J Trace Elem Med Biol 51:42–49. https://doi.org/10.1016/j.jtemb.2018.09.007

    CAS  Article  PubMed  Google Scholar 

  19. Osterode W, Falkenberg G, Petzelbauer P (2007) Two-dimensional distribution of gadolinium in nephrogenic systemic fibrosis. https://hasyweb.desy.de/science/annual_reports/2007_reports/

  20. Puttagunta NR, Gibby WA, Smith GT (1996) Human in vivo comparative study of zinc and copper transmetallation after administration of magnetic resonance imaging contrast agents. Invest Radiol 31(12):739–742. https://doi.org/10.1097/00004424-199612000-00001

    CAS  Article  PubMed  Google Scholar 

  21. Rogosnitzky M, Branch S (2016) Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. Biometals 29(3):365–376. https://doi.org/10.1007/s10534-016-9931-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Sanyal S, Marckmann P, Scherer S, Abraham JL (2011) Multiorgan gadolinium (Gd) deposition and fibrosis in a patient with nephrogenic systemic fibrosis–an autopsy-based review. Nephrol Dial Transplant 26(11):3616–3626. https://doi.org/10.1093/ndt/gfr085

    CAS  Article  PubMed  Google Scholar 

  23. Semelka RC, Ramalho J, Vakharia A, AlObaidy M, Burke LM, Jay M, Ramalho M (2016) Gadolinium deposition disease: Initial description of a disease that has been around for a while. Magn Reson Imaging 34:1383–1390. https://doi.org/10.1016/j.mri.2016.07.016

    CAS  Article  PubMed  Google Scholar 

  24. Sherry AD, Caravan P, Lenkinski RE (2009) Primer on gadolinium chemistry. J Magn Reson Imaging 30(6):1240–1248. https://doi.org/10.1002/jmri.21966

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sieber MA, Pietsch H, Walter J, Haider W, Frenzel T, Weinmann HJ (2008) A preclinical study to investigate the development of nephrogenic systemic fibrosis: a possible role for gadolinium-based contrast media. Invest Radiol 43(1):65–75. https://doi.org/10.1097/RLI.0b013e31815e6277

    Article  PubMed  Google Scholar 

  26. Spencer AJ, Wilson SA, Batchelor J, Reid A, Rees J, Harpur E (1997) Gadolinium chloride toxicity in the rat. Toxicol Pathol 25(3):245–255. https://doi.org/10.1177/019262339702500301

    CAS  Article  PubMed  Google Scholar 

  27. Swaminathan S, High WA, Ranville J, Horn TD, Hiatt K, Thomas M, Brown HH, Shah SV (2008) Cardiac and vascular metal deposition with high mortality in nephrogenic systemic fibrosis. Kidney Int 73:1413–1418. https://doi.org/10.1038/ki.2008.76

    CAS  Article  PubMed  Google Scholar 

  28. Thakral C, Abraham JL (2009) Gadolinium-induced nephrogenic systemic fibrosis is associated with insoluble Gd deposits in tissues: in vivo transmetallation confirmed by microanalysis. J Cutan Pathol 36(12):1244–1254. https://doi.org/10.1111/j.1600-0560.2009.01283.x

    Article  PubMed  Google Scholar 

  29. Vekemans B, Janssens K, Vince L, Adams F, Van Espen P (1994) Analysis of X-ray spectra by iterative least squares (AXIL). New developments. X-Ray Spectr 23:278–285

    CAS  Article  Google Scholar 

  30. Wagner B, Drel V, Gorin Y (2016) Pathophysiology of gadolinium-associated systemic fibrosis. Am J Physiol Renal Physiol 311(1):F1–F11. https://doi.org/10.1152/ajprenal.00166.2016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Wang YX, Schroeder J, Siegmund H et al (2015) Total gadolinium tissue deposition and skin structural findings following the administration of structurally different gadolinium chelates in healthy and ovariectomized female rats. Quant Imaging Med Surg 5(4):534–545. https://doi.org/10.3978/j.issn.2223-4292.2015.05.03

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang S, Hesse B, Roman M et al (2019) Increased retention of gadolinium in the inflamed brain after repeated administration of gadopentetate dimeglumine: a proof-of-concept study in mice combining ICP-MS and micro- and nano-SR-XRF. Invest Radiol 54:617–626

    CAS  Article  Google Scholar 

  33. Yang XC, Sachs F (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243(4894 Pt 1):1068–1071. https://doi.org/10.1126/science.2466333

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wolf Osterode.

Ethics declarations

Conflict of interest

The authors declare no financial, consulting, or personal conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Osterode, W., Falkenberg, G. & Regele, H. Gadolinium distribution in kidney tissue determined and quantified by micro synchrotron X-ray fluorescence. Biometals 34, 341–350 (2021). https://doi.org/10.1007/s10534-020-00284-8

Download citation

Keywords

  • Gadolinium
  • Kidney
  • Synchrotron X-ray fluorescence
  • Calcium
  • Zinc
  • Strontium