Skip to main content
Log in

Enhancement of oncolytic virotherapy by vanadium(V) dipicolinates

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Oncolytic viruses rewire the immune system and can lead to long-lasting antitumor defenses against primary and metastatic tumors. However, results from clinical studies have shown heterogeneity in responses suggesting that multiplexed approaches may be necessary to consistently generate positive outcomes in patients. To this end, we explored the combination of oncolytic rhabdovirus VSV∆51 with vanadium(V) dipicolinate derivatives, which have already been explored for their antidiabetic properties in animal models. The combination of vanadium-based dipicolinate compounds with VSV∆51 significantly increased viral replication and cytotoxicity in the human renal cell carcinoma cell line 786-0. The effects of three vanadium(V)-dipicolinate coordination complexes ([VO2dipic], [VO2dipic-OH] and [VO2dipic-Cl] with –OH or –Cl in the para position) were compared to that of the simple salts using spectroscopy and speciation profiles. Like the vanadate salts and the vanadyl cation, all dioxovanadium(V) dipicolinate complexes tested were found to increase viral infection and cytotoxicity when used in combination with VSV∆51. Viral sensitization is dependent on the vanadium since free dipicolinate ligands exerted no effect on viral infection and viability. The ability of these complexes to interact with interfaces and the stability of the complexes were evaluated under physiological conditions. Results indicate that these complexes undergo hydrolysis in cell culture media thereby generating vanadate. The vanadium dipicolinate derivatives in the context of immunovirotherapy shares similarities with previous studies exploring the antidiabetic properties of the compounds. The synergy between vanadium compounds and the oncolytic virus suggests that these compounds may be valuable in the development of novel and effective pharmaco-viral therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AOT:

Sodium aerosol-OT (sodium salt of bis(2-ethylhexyl)sulfosuccinate)

BEOV:

Bis(ethylmaltolato)oxovanadium(IV)

BMOV:

Bis(maltolato)oxovanadium(IV)

DSS:

3-Trimethylsilyl-1-propanesulfonic acid sodium salt

H2dipic:

Dipicolinic acid, 2,6-pyridinedicarboxylic acid

H2dipic-OH:

4-Hydroxydipicolinic acid

H2dipic-Cl:

4-Chlorodipicolinic acid

HPI:

Hours post infection

GFP:

Green fluorescent protein

MOI:

Multiplicity of infection

OV:

Oncolytic virus

T-VEC:

Talimogene laherparepvec

[VO2dipic] :

Dioxovanadium(V) dipicolinate

[VO2dipic-OH] :

Dioxovanadium(V) 4-hydroxydipicolinate

[VO2dipic-Cl] :

Dioxovanadium(V) 4-chlorodipicolinate

VSV:

Vesicular stomatitis virus

References

  • Achard C, Surendran A, Wedge M, Ungerechts G, Bell J, Ilkow C (2018) Lighting a Fire in the tumor microenvironment using oncolytic immunotherapy. EBioMedicine 31:17–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord Chem Rev 184:311–318

    Article  CAS  Google Scholar 

  • Baruah B, Roden J, Sedgwick M, Correa N, Crans D, Levinger N (2006) When is water not water? Exploring water confined in large reverse micelles using a highly charged inorganic molecular probe. J Am Chem Soc 128:12758–12765

    Article  CAS  PubMed  Google Scholar 

  • Bishayee A, Waghray A, Patel M, Chatterjee M (2010) Vanadium in the detection, prevention and treatment of cancer: the in vivo evidence. Cancer Lett 294:1–12

    Article  CAS  PubMed  Google Scholar 

  • Buglyo P, Crans D, Nagy E, Lindo R, Yang L, Smee J, Jin W, Chi L, Godzala M, Willsky G (2005) Aqueous chemistry of the vanadium(III) (V-III) and the V-III-dipicolinate systems and a comparison of the effect of three oxidation states of vanadium compounds on diabetic hyperglycemia in rats. Inorg Chem 44:5416–5427

    Article  CAS  PubMed  Google Scholar 

  • Correa N, Suilber J, Riter R, Levinger N (2012) Nonaqueous polar solvents in reverse micelle systems. Chem Rev 112:4569–4602

    Article  CAS  PubMed  Google Scholar 

  • Crans D (2000) Chemistry and insulin-like properties of vanadium(IV) and vanadium(V) compounds. J Inorg Biochem 80:123–131

    Article  CAS  PubMed  Google Scholar 

  • Crans D (2015) Antidiabetic, chemical, and physical properties of organic vanadates as presumed transition-state inhibitors for phosphatases. J Org Chem 80:11899–11915

    Article  CAS  PubMed  Google Scholar 

  • Crans D, Keramidas A, Drouza C (1996) Organic vanadium compounds—transition state analogy with organic phosphorus compounds. Phosphorus, Sulfur Silicon Relat Elem 109–110:245–248

    Article  Google Scholar 

  • Crans D, Yang L, Jakusch T, Kiss T (2000) Aqueous chemistry of ammonium (dipicolinato)oxovanadate(V): the first organic vanadium(V) insulin-mimetic compound. Inorg Chem 39:4409–4416

    Article  CAS  Google Scholar 

  • Crans D, Mahroof-Tahir M, Johnson M, Wilkins P, Yang L, Robbins K, Johnson A, Alfano J, Godzala M, Austin L, Willsky G (2003a) Vanadium(IV) and vanadium(V) complexes of dipicolinic acid and derivatives. Synthesis, X-ray structure, solution state properties and effects in rats with STZ-induced diabetes. Inorg Chim Acta 356:365–378

    Article  CAS  Google Scholar 

  • Crans D, Yang L, Alfano J, Chi L, Jin W, Mahroof-Tahir M, Robbins K, Toloue M, Chan L, Plante A, Grayson R, Willsky G (2003b) (4-Hydroxypyridine-2,6-dicarboxylato)oxovanadate(V)-a new insulin-like compound: chemistry, effects on myoblast and yeast cell growth and effects on hyperglycemia in rats with STZ-induced diabetes. Coord Chem Rev 237:13–22

    Article  CAS  Google Scholar 

  • Crans D, Rithner C, Baruah B, Gourley B, Levinger N (2006) Molecular probe location in reverse micelles determined by NMR dipolar interactions. J Am Chem Soc 128:4437–4445

    Article  CAS  PubMed  Google Scholar 

  • Crans D, Trujillo A, Pharazyn P, Cohen M (2011) How environment affects drug activity: localization, compartmentalization and reactions of a vanadium insulin-enhancing compound, dipicolinatooxovanadium(V). Coord Chem Rev 255:2178–2192

    Article  CAS  Google Scholar 

  • Crans D, Woll K, Prusinskas K, Johnson M, Norkus E (2013) Metal Speciation in Health and Medicine Represented by Iron and Vanadium. Inorg Chem 52:12262–12275

    Article  CAS  PubMed  Google Scholar 

  • Crans D, Yang L, Haase A, Yang X (2018) Health benefits of vanadium and its potential as an anticancer agent. Met Ions Life Sci 18:251

    CAS  Google Scholar 

  • Crans D, Barkley N, Montezinho L, and Castro M (2019). Vanadium Compounds as enzyme inhibitors with a focus on anticancer effects. In: Angela Casini AVASMM (ed) Metal-based Anticancer Agents. pp 169–195

  • D’cruz O, Uckun F (2002) Metvan: a novel oxovanadium(IV) complex with broad spectrum anticancer activity. Expert Opin Invest. Drugs 11:1829–1836

    Article  Google Scholar 

  • Davies D, Hol W (2004) The power of vanadate in crystallographic investigations of phosphoryl transfer enzymes. FEBS Lett 577:315–321

    Article  CAS  PubMed  Google Scholar 

  • Diallo J, Vähä-Koskela M, Boeuf FL, Bell J (2012) Propagation, purification, and in vivo testing of oncolytic vesicular stomatitis virus strains. Oncol Viruses 797:127–140

    Article  CAS  Google Scholar 

  • Elvingson K, Gonzalez Baro A, Pettersson L (1996) Speciation in vanadium bioinorganic systems. 2. An NMR, ESR, and potentiometric study of the aqueous H + -vanadate-maltol system. Inorg Chem 35:3388–3393

    Article  CAS  PubMed  Google Scholar 

  • Etcheverry S, Ferrer E, Naso L, Rivadeneira J, Salinas V, Williams P (2008) Antioxidant effects of the VO(IV) hesperidin complex and its role in cancer chemoprevention. J Biol Inorg Chem 13:435–447

    Article  CAS  PubMed  Google Scholar 

  • Evangelou A, Kolettas E, Tenopoulou M, Galaris D, Gonos E, Manos G (2002) Vanadium inhibits HaCaT cell proliferation but does not cause apoptosis. Met Ions Biol Med 7:154–158

    CAS  Google Scholar 

  • Glasoe P, Long FA (1960) Use of glass electrodes to measure acidities in deuterium oxide. J Phys Chem 64:188–190

    Article  CAS  Google Scholar 

  • Goldfine A, Patti M, Zuberi L, Goldstein B, Leblanc R, Landaker E, Jiang Z, Willsky G, Kahn C (2000) Metabolic effects of vanadyl sulfate in humans with non—insulin-dependent diabetes mellitus: in vivo and in vitro studies. Metabolism 49:400–410

    Article  CAS  PubMed  Google Scholar 

  • Kieler J, Gromek A, Nissen N (1965) Studies on the antineoplastic effect of vanadium salts. Acta Chir Scand Suppl 343:154–164

    CAS  PubMed  Google Scholar 

  • Kioseoglou E, Petanidis S, Gabriel C, Salifoglou A (2015) The chemistry and biology of vanadium compounds in cancer therapeutics. Coord Chem Rev 301–302:87–105

    Article  CAS  Google Scholar 

  • Kiss T, Jakusch T, Hollender D, Dornyei A, Enyedy E, Pessoa J, Sakurai H, Sanz-Medel A (2008) Biospeciation of antidiabetic VO(IV) complexes. Coord Chem Rev 252:1153–1162

    Article  CAS  Google Scholar 

  • Kopfmaier P, Wagner W, Hesse B, Köpf H (1981) Tumor inhibition by metallocenes: activity against leukemias and detection of the systemic effect. Europ J Cancer 17:665–669

    Article  CAS  Google Scholar 

  • Kowalski S, Hac S, Wyrzykowski D, Zauszkiewicz-Pawlak A, Inkielewicz-Stepniak I (2017) Selective cytotoxicity of vanadium complexes on human pancreatic ductal adenocarcinoma cell line by inducing necroptosis, apoptosis and mitotic catastrophe process. Oncotarget 8:60324–60341

    Article  PubMed  PubMed Central  Google Scholar 

  • Leon I, Diez P, Baran E, Etcheverry S, Fuentes M (2017) Decoding the anticancer activity of VO-clioquinol compound: the mechanism of action and cell death pathways in human osteosarcoma cells. Metallomics 9:891–901

    Article  CAS  PubMed  Google Scholar 

  • León I, Cadavid-Vargas J, Tiscornia I, Porro V, Castelli S, Katkar P, Desideri A, Bollati-Fogolin M, Etcheverry S (2015) Oxidovanadium (IV) complexes with chrysin and silibinin: anticancer activity and mechanisms of action in a human colon adenocarcinoma model. J Biol Inorg Chem 20:1175–1191

    Article  CAS  PubMed  Google Scholar 

  • Li H, Willingham S, Ting J, Re F (2008) Cutting edge: inflammasome activation by alum and alum’s adjuvant effet are mediated by NLRP3. J Immunol 181:17–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Ding W, Smee J, Baruah B, Willsky G, Crans D (2009) Anti-diabetic effects of vanadium(III, IV, V)-chlorodipicolinate complexes in streptozotocin-induced diabetic rats. Biometals 22:895–905

    Article  CAS  PubMed  Google Scholar 

  • Lyonnet B, Martz S, Martin E (1899) L’emploi therapeutique des derives du vanadium. La Presse Méd 1:191–192

    Google Scholar 

  • Mclauchlan C, Peters B, Willsky G, Crans D (2015) Vanadium-phosphatase complexes: phosphatase inhibitors favor the trignonal bipyramidal transition state geometries. Coord Chem Rev 301–302:163–199

    Article  CAS  Google Scholar 

  • Murthy M, Toney J, Rao L, Kuo L, Marks T (1986) Pharmacologic studies on the new antitumor agent vanadocene dichloride (VDC). Proc Am Assoc Cancer Res 27:279–279

    Google Scholar 

  • O’Shea JJ, McVicar DW, Bailey TL, Burns C, Smyth MJ (1992) Activation of human peripheral blood T lymphocytes by pharmacological induction of protein-tyrosine phosphorylation. Proc Natl Acad Sci USA 89(21):10306–10310

    Article  PubMed  Google Scholar 

  • Pessoa J, Etcheverry S, and Gambino D (2015a). Vanadium compounds in medicine. In: Conte V and Giulia L (eds) The Ninth International Symposium on the chemistry and biological chemistry of vanadium. Padova, Italy

  • Pessoa J, Etcheverry S, Gambino D (2015b) Vanadium compounds in medicine. Coord Chem Rev 301:24–48

    Article  CAS  Google Scholar 

  • Petanidis S, Kioseoglou E, Hadzopoulou-Cladaras M, Salifoglou A (2013) Novel ternary vanadium-betaine-peroxido species suppresses H-ras and matrix metalloproteinase-2 expression by increasing reactive oxygen species-mediated apoptosis in cancer cells. Cancer Lett 335:387–396

    Article  CAS  PubMed  Google Scholar 

  • Pettersson L, Hedman B, Andersson I, Ingri N (1983) Multicomponent polyanions. 34. P potentiometric and 51 V NMR study of equilibria in the H + -HVO42- system in the 0.6 M Na(Cl) medium covering the range 1£-1 g[H +]£10. Chem Scrip 22:254–264

    CAS  Google Scholar 

  • Pettersson L, Andersson I, Hedman B (1985) Multicomponent polyanions. 37. A potentiometric and 51 V-NMR study of equilibria in the H + -HVO42- system in 3.0 M-Na(ClO4) medium covering the range 1£-1 g[H +]£10. Chem Scr 25:309–317

    CAS  Google Scholar 

  • Phan M, Watson M, Alain T, Diallo J (2018) Oncolytic viruses on drugs: achieving higher therapeutic efficacy. ACS Infect Dis 4:1448–1467

    Article  CAS  PubMed  Google Scholar 

  • Rampersad S (2012) Multiple applications of alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 12:12347–12360

    Article  CAS  PubMed  Google Scholar 

  • Rehman H, Silk A, Kane M, Kaufman H (2016) Into the clinic: Talimogene laherparepvec (T-VEC), a first-in-class intratumoral oncolytic viral therapy. J Immunother Cancer 4:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanna D, Garribba E, Micera G (2009a) Interaction of VO2 + ion with human serum transferrin and albumin. J Inorg Biochem 103:648–655

    Article  CAS  PubMed  Google Scholar 

  • Sanna D, Micera G, Garribba E (2009b) On the transport of vanadium in blood serum. Inorg Chem 48:5747–5757

    Article  CAS  PubMed  Google Scholar 

  • Sanna D, Buglyo P, Micera G, Garribba E (2012) Biotransformation of BMOV in the presence of blood serum proteins. Metabolomics 4:33–36

    CAS  Google Scholar 

  • Sanna D, Ugone V, Micera G, Buglyo P, Biro L, Garribba E (2017) Speciation in human blood of Metvan, a vanadium based potential anti-tumor drug. Dalton Trans 46:8950–8967

    Article  CAS  PubMed  Google Scholar 

  • Scior T, Guevara-Garcia J, Do Q, Bernard P, Laufer S (2016) Why antidiabetic vanadium complexes are not in the pipeline of “big pharma” drug research? A critical review. Curr Med Chem 23:2874–2891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Secrist JP, Burns LA, Karnitz L, Koretzky GA, Abraham RT (1993) Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. J Biol Chem 268(8):5886–5893

    CAS  PubMed  Google Scholar 

  • Selman M, Rousso C, Bergeron A, Son H, Krishnan R, El-Sayes N, Varette O, Chen A, Le Boeuf F, Tzelepis F, Bell J, Crans D, Diallo J (2018) Multi-modal potentiation of oncolytic virotherapy by vanadium compounds. Mol Ther 26:56–69

    Article  CAS  PubMed  Google Scholar 

  • Smee J, Epps J, Ooms K, Bolte S, Polenova T, Baruah B, Yang L, Ding W, Li M, Willsky G, La Cour A, Anderson O, Crans D (2009) Chloro-substituted dipicolinate vanadium complexes: synthesis, solution, solid-state, and insulin-enhancing properties. J Inorg Biochem 103:575–584

    Article  CAS  PubMed  Google Scholar 

  • Sostarecz A, Gaidamauskas E, Distin S, Bonetti S, Levinger N, Crans D (2014) Correlation of insulin-enhancing properties of vanadium-dipicolinate complexes in model membrane systems: phospholipid Langmuir monolayers and AOT reverse micelles. Chem Eur J 20:5149–5159

    Article  CAS  PubMed  Google Scholar 

  • Stahla M, Baruah B, James D, Johnson M, Levinger N, Crans D (2008) 1H NMR studies of aerosol-OT reverse micelles with alkali and magnesium counterions: preparation and analysis of MAOTs. Langmuir 24:6027–6035

    Article  CAS  PubMed  Google Scholar 

  • Storr T, Thompson K, Orvig C (2006) Design of targeting ligands in medicinal inorganic chemistry. Chem Soc Rev 36:534–544

    Article  CAS  Google Scholar 

  • Thompson K, Orvig C (2006) Vanadium in diabetes: 100 years from phase 0 to phase I. J Inorg Biochem 100:1925–1935

    Article  CAS  PubMed  Google Scholar 

  • Thompson K, Liboiron B, Sun Y, Bellman K, Setyawati I, Patrick B, Karunaratne V, Rawji G, Wheeler J, Sutton K, Bhanot S, Cassidy C, Mcneill J, Yuen V, Orvig C (2003) Preparation and characterization of vanadyl complexes with bidentate maltol-type ligands; in vivo comparisons of anti-diabetic therapeutic potential. J Biol Inorg Chem 8:66–74

    Article  CAS  PubMed  Google Scholar 

  • Thompson K, Lichter J, Lebel C, Scaife M, Mcneill J, Orvig C (2009) Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem 103:554–558

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Liu T, Fu Y, Wang K, Yang X (2010) Vanadium compounds discriminate hepatoma and normal hepatic cells by differential regulation of reactive oxygen species. J Biol Inorg Chem 15:1087–1097

    Article  CAS  PubMed  Google Scholar 

  • Willsky G, Chi L, Godzala M, Kostyniak P, Smee J, Trujillo A, Alfano J, Ding W, Hu Z, Crans D (2011) Anti-diabetic effects of a series of vanadium dipicolinate complexes in rats with streptozotocin-induced diabetes. Coord Chem Rev 255:2258–2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willsky G, Halvorsen K, Godzala M, Chi L, Most M, Kaszynski P, Crans D, Goldfine A, Kostyniak P (2013) Coordination chemistry may explain pharmacokinetics and clinical response of vanadyl sulfate in type 2 diabetic patients. Metallomics 5:1491–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Hong Y, Xg XY (2016a) Bis(acetylacetonato)-oxidovanadium(IV) and sodium metavanadate inhibit cell proliferation via ROS-induced sustained MAPK/ERK activation but with elevated AKT activity in human pancreatic cancer AsPC-1 cells. J Biol Inorg Chem 21:1–11

    Article  CAS  Google Scholar 

  • Wu X, Peters B, Rithner C, Crans D (2016b) Multinuclear NMR studies of aqueous vanadium-HEDTA complexes. Polyhedron 114:325–332

    Article  CAS  Google Scholar 

  • Yang X, Wang K (2016) Focusing on the link between diabetes, Alzheimer’s disease and cancer for the discovery of new medicines. Curr Top Med Chem 16:675

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wang K, Lu J, Crans D (2003) Membrane transport of vanadium compounds and the interaction with the erythrocyte membrane. Coord Chem Rev 237:103–111

    Article  CAS  Google Scholar 

  • Yoshikawa Y, Sakurai H, Crans D, Micera G, Garribba E (2014) Structural and redox requirements for the action of anti-diabetic vanadium compounds. Dalton Trans 43:6965–6972

    Article  CAS  PubMed  Google Scholar 

  • Zizic Z, Miladinovic M, Stanic M, Hadzibrahimovic M, Zivic M, Zakrzekska J (2016) (51)V NMR investigation of cell-associated vanadate species in Phycomyces blakesleeanus mycelium. Res Microbiol 167:521–528

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AB holds a QEII Ontario Graduate Scholarship and a Hans K. Uhtoff scholarship. MS was awarded a Canadian Institutes of Health Research (CIHR) doctoral scholarship. JSD thanks Terry Fox Research Institute Program Project grant for funding. JSD also holds a New Investigator award from CIHR in Infection and Immunity. DCC received funding from the Arthur Cope foundation administered by the American Chemical Society. The authors thank all funding agencies for their generous support of scholarships and grants.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Simon Diallo or Debbie C. Crans.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4916 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergeron, A., Kostenkova, K., Selman, M. et al. Enhancement of oncolytic virotherapy by vanadium(V) dipicolinates. Biometals 32, 545–561 (2019). https://doi.org/10.1007/s10534-019-00200-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-019-00200-9

Keywords

Navigation